
Artificial Intelligence Algorithms for the Real-Time
Selection of Physically Important Events Within the
CMS L1 Trigger FPGA Devices

Burazin Mišura, Arijana

Doctoral thesis / Disertacija

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture /
Sveučilište u Splitu, Fakultet elektrotehnike, strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:179:060086

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-12-28

Repository / Repozitorij:

Repository of the Faculty of Electrical Engineering,
Mechanical Engineering and Naval Architecture -
University of Split

https://urn.nsk.hr/urn:nbn:hr:179:060086
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fesb.unist.hr
https://repozitorij.fesb.unist.hr
https://repozitorij.fesb.unist.hr
https://repozitorij.svkst.unist.hr/islandora/object/fesb:1289
https://dabar.srce.hr/islandora/object/fesb:1289

Arijana Burazin Mišura

ARTIFICIAL INTELLIGENCE ALGORITHMS FOR

THE REAL-TIME SELECTION OF PHYSICALLY

IMPORTANT EVENTS WITHIN THE CMS L1

TRIGGER FPGA DEVICES

DOCTORAL THESIS

Split, 2024.

U N I V E R S I T Y O F S P L I T
FACULTY OF ELECTRICAL ENGINEERING, MECHANICAL ENGINEERING

AND NAVAL ARCHITECTURE

Split, 2024.

U N I V E R S I T Y O F S P L I T
FACULTY OF ELECTRICAL ENGINEERING, MECHANICAL ENGINEERING

AND NAVAL ARCHITECTURE

Arijana Burazin Mišura

Artificial Intelligence Algorithms for the Real-Time
Selection of Physically Important Events Within the CMS

L1 Trigger FPGA Devices

DOCTORAL THESIS

The research reported in this thesis was carried out at the Department of Electronics and
Computing, Faculty of Electrical Engineering, Mechanical Engineering and Naval
Architecture (FESB), University of Split, Split, Croatia.

Supervisor: Assoc. Prof. Josip Musić, Ph. D., FESB, University of Split, Croatia
Co-Supervisor: Prof. Linda Vicković, Ph. D., FESB, University of Split, Croatia
Dissertation number: 204

BIBLIOGRAPHIC INFORMATION

Keywords: HL-LHC, CMS, Level 1 Trigger, Machine Learning, Neural Network,
Classification, Quantized Neural Network
Scientific area: Technical sciences
Scientific field: : Computer science
Scientific branch: Artificial intelligence
Institution of PhD completion: University of Split, Faculty of Electrical Engineering,
Mechanical Engineering and Naval Architecture
Supervisor of the thesis: Assoc. Prof. Josip Musić, Ph. D.
Co-Supervisor of the thesis: Prof. Linda Vicković, Ph. D.
Number of pages: 123
Number of figures: 67
Number of tables: 35
Number of references: 199

ii

Committee for assessment of doctoral dissertation:

1. Prof. Vladan Papić, Ph. D., FESB, University of Split, Croatia

2. Asst. Prof. Damir Lelas, Ph. D., FESB, University of Split, Croatia

3. Asst. Prof. Maja Braović, Ph. D., FESB, University of Split, Croatia

4. Asst. Prof. Mirela Kundid Vasić, Ph. D., Faculty of Mechanical Engineering and
Computing, University of Mostar, Bosnia and Herzegovina

5. Jean-Baptiste Sauvan, Ph. D., Laboratoire Leprince-Ringuet (LLR), Ecole
Polytechnique, Palaiseau, France

Committee for the defence of doctoral dissertation:

1. Prof. Vladan Papić, Ph. D., FESB, University of Split, Croatia

2. Asst. Prof. Damir Lelas, Ph. D., FESB, University of Split, Croatia

3. Asst. Prof. Maja Braović, Ph. D., FESB, University of Split, Croatia

4. Asst. Prof. Mirela Kundid Vasić, Ph. D., Faculty of Mechanical Engineering and
Computing, University of Mostar, Bosnia and Herzegovina

5. Jean-Baptiste Sauvan, Ph. D., Laboratoire Leprince-Ringuet (LLR), Ecole
Polytechnique, Palaiseau, France

Dissertation defended on: 24. 09. 2024.

iii

Artificial Intelligence Algorithms for the Real-Time Selection of Physically
Important Events Within the CMS L1 Trigger FPGA Devices

Abstract

The Large Hadron Collider is the largest particle accelerator in the world with the purpose of
colliding protons accelerated to nearly the speed of light, resulting in the creation of new and
exotic particles. Four detectors surround the collision points and record the data resulting
from the proton-proton collisions. This data is then used for a wide range of physical anal-
yses that intend to improve our understanding of particle physics and predict new theories.
To increase its discovery potential, the LHC project aims to significantly boost the lumi-
nosity in the High Luminosity-Large Hadron Collider phase, which will, in turn, increase
the number of collision events. The detector technologies are improved to address the chal-
lenges posed by the increased luminosity. However, it has become imperative to optimize
the algorithms in the data selection system to effectively manage the presence of multiple
interactions in the same bunch crossing (pile-up). This research focuses on using neural net-
works to select physically important events in real-time in the Compact Muon Solenoid, one
of the LHC detectors. Simple multilayer perceptron and convolutional neural networks are
developed to successfully distinguish electromagnetic showers from different types of back-
grounds using raw detector images. Data selection and quantization methods are proposed
to reduce the size of the presented models. Finally, profiling tools enable the determination
of the precision settings needed to keep model inference accuracy, which further reduces
the memory and computational requirements. The suggested approach was assessed using
simulated data since the detector is still in the production phase. The inference time was less
than 1 microsecond and signal-background classification achieved a classification accuracy
of 97.01% for 2-bit-only quantization. This accuracy is the same as for the full-precision
standard network, with a slightly decreased false negative rate. Overall, the research output
presented within the thesis confirms the successful implementation of developed models in
the targeted device while meeting the latency requirement, which makes them candidates for
one of the level 1 trigger algorithms.

Keywords:
HL-LHC, CMS, Level 1 Trigger, Machine Learning, Neural Network, Classification, Quan-
tized Neural Network

iv

Algoritmi umjetne inteligencije za selekciju fizikalno bitnih dogad̄aja u re-
alnom vremenu na FPGA ured̄ajima unutar CMS L1 okidača

Sažetak

Veliki Hadronski Sudarač (engl. Large Hadron Collider, LHC) je najveći akcelerator čes-
tica na svijetu. U njemu se sudaraju protoni, ubrzani skoro do brzine svjetlosti, što rezultira
stvaranjem novih i egzotičnih čestica. Četiri detektora okružuju točke sudara i bilježe do-
bivene podatke iz proton-proton sudara. Ti se podaci zatim koriste za širok raspon fizikalnih
analiza s ciljem poboljšanja našeg razumijevanja i predvid̄anja različitih teorija fizike čes-
tica. Kako bi se povećala mogućnost otkrića, LHC projekt planira značajno povećati lumi-
nozitet u HL-LHC (engl. High Level LHC), što će rezultirati povećanjem broja sudara. Kako
bi bilo moguće pratiti izazove koje predstavlja povećanje luminoziteta trebalo je poboljšati
tehnologije koje se koriste unutar detektora. Med̄utim, to ipak nije dovoljno, pa je imperativ
postala optimizacija algoritama u sustavu odabira podataka kako bi se učinkovito upravljalo
prisutnošću višestrukih interakcija u istom skupu sudara (pile-up). Ovo istraživanje usm-
jereno je na korištenje neuronskih mreža u odabiru fizički važnih dogad̄aja u stvarnom vre-
menu u Kompaktnom Muonskom Solenoidu, jednom od LHC detektora. Razvijene su jed-
nostavne višeslojne perceptronske i konvolucijske neuronske mreže koje uspješno razlikuju
elektromagnetske pljuskove od različitih vrsta pozadine koristeći neobrad̄ene slike detektora.
Predložene su metode odabira podataka i kvantizacije koje smanjuju veličinu predstavljenih
modela. Konačno, alati za profiliranje omogućuju utvrd̄ivanje postavki preciznosti potrebnih
za održavanje točnosti zaključivanja modela, što dodatno smanjuje memorijske i računalne
zahtjeve. Predloženi pristupi ispitani su korištenjem simuliranih podataka budući da je de-
tektor još uvijek u fazi izrade. Vrijeme zaključivanja bilo je manje od 1 mikrosekunde te je
kod klasifikacije signala i pozadine postignuta točnost od 97,01% pri kvantizaciji modela i
podataka na samo 2 bita. Ova točnost je ista kao i za standardnu mrežu pune preciznosti,
med̄utim s blagim padom stope lažno negativnih rezultata. Sveukupno, rezultati istraživanja
predstavljeni u okviru teze potvrd̄uju uspješnu implementaciju razvijenih modela u ciljani
ured̄aj uz ispunjavanje zahtjeva latencije, što ih čini kandidatima za jedan od algoritama
okidanja razine 1.

Ključne riječi:
HL-LHC, CMS, okidač razine 1, strojno učenje, neuronska mreža, klasifikacija, kvantizirana
neuronska mreža

v

Acknowledgments

I would like to express my deepest gratitude to my supervisor, Prof. Musić, for his invaluable

help, unwavering support, and understanding throughout all these years. His guidance has

been instrumental in shaping both my research and my academic journey. The best supervi-

sor ever.

I consistently contacted my co-supervisor, Prof. Vicković, at the final moments before dead-

lines. She was always accessible and empathetic. Her unwavering support and constant

availability have been extremely valuable to me.

I am especially grateful to Prof. Lelas, without whom I would never have managed to create

the images, a crucial part of the experiment. His expertise and insight were key to this aspect

of my research.

A special thanks to Jean Baptiste Sauvan, who provided invaluable knowledge, expert guid-

ance, well-researched recommendations, and innovative suggestions, all of which were cru-

cial in steering this research project to a successful conclusion.

I would also like to express my gratitude to Marina, Duje, and Ante, members of the FESB-

CMS group. They patiently listened to my numerous presentations and provided valuable

feedback.

Special thanks to my professional colleagues who have been valuable collaborators and have

become dear personal friends over the years: Nada, Mia, Petar, Marko, and Tonko. I am

immensely grateful to Prof. Plazibat for his unwavering encouragement. It was thanks to his

support that I had the privilege of meeting the late prof. Ožegović, who introduced me to the

CMS world and included me in the CMS-FESB team.

To my dearest friends, Elza, Tamara, Anita, Ivana, and Sanja: thank you for making life

bearable and for standing by my side in both good times and bad; your unwavering support

and trust have meant the world to me.

In the end, to my small family, Marko and Luce: it is finally done!

Contents

Abstract . iv
Sažetak . v
Acknowledgments . vii
List of Tables . xi
List of Figures . xvi
List of Acronyms . xvii

1 INTRODUCTION 1
1.1 Motivation . 1
1.2 Literature Review . 4
1.3 Hypothesis . 7
1.4 Dissertation Outline . 8

2 MATERIALS AND METHODS 11
2.1 The CMS Detector . 11

2.1.1 Coordinate System and Conventions 13
2.1.2 Subdetectors . 14
2.1.3 Trigger System . 16
2.1.4 The CMS Upgrades for HL-LHC 17

2.2 Machine Learning in High Energy Physics 22
2.2.1 Fundamental ML Principles . 23
2.2.2 Challenges . 25
2.2.3 Baseline Particle Classification Methods in HEP 26
2.2.4 Neural Networks . 30
2.2.5 Neural Network Applications in HEP 38

2.3 Dataset . 41
2.3.1 Event Generation Process . 41
2.3.2 Event Simulation . 42
2.3.3 Event Selection . 43
2.3.4 Image Formation . 43

2.4 Data Reduction Methods . 47
2.4.1 Data Refinement . 49

2.5 Alternative Image Generation Process . 53

viii

2.5.1 Consecutive Layers Based Approach 54
2.5.2 Principal Component Analysis Based Approach 54

2.6 Model Development and Reduction Methods 56
2.6.1 Model Architecture . 57
2.6.2 Model Quantization . 60

3 RESULTS AND DISCUSSION 63
3.1 Binary Classification . 63

3.1.1 Base Neural Network Models . 63
3.1.2 Model Analysis . 65
3.1.3 Model Quantization . 69
3.1.4 Comparison with Baseline Algorithms 72
3.1.5 Classification Threshold Adjustment 76
3.1.6 Data Refinement . 77

3.2 Multiclass Classification . 86
3.2.1 Base four-class Classification . 87
3.2.2 Four-class Classification with Additional Features 89
3.2.3 Joined PU/QCD Background Approach (three-class Classification) . 93

3.3 Alternative images . 95
3.4 FPGA Implementation . 97

3.4.1 FPGA - Basic Concepts . 97
3.4.2 hls4ml . 98
3.4.3 Neural Network Model Selection 100
3.4.4 Implementation Results . 101
3.4.5 Estimation of FPGA Resource Usage 102

4 CONCLUSIONS AND FUTURE WORK 105

BIBLIOGRAPHY 109

ix

List of Tables

2.1 HGCAL active material parameters. 20

2.2 Data refinement methods. 53

2.3 The results of model structure optimization for CNN and MLP for each clas-
sification case. The table describes hidden layers. 59

3.1 The results for the base CNN and MLP model for EM vs. different back-
ground (PU or QCD). 63

3.2 The results for the base CNN and MLP model for EM vs. MIX. 64

3.3 The results for the base CNN and MLP model for EM vs. MIX, dataset ex-
tended with samples shifted up to ± 2 layers. 66

3.4 The results of the CNN model and MLP for different quantization levels. . . 71

3.5 The results for the 2-bit quantized CNN and MLP models. 72

3.6 The results of Support Vector Machine classifier. 74

3.7 The results of Random Forest classifier (with optimized parameters). 75

3.8 The results of the QCNN and QML model for threshold belonging to largest
J statistic. 76

3.9 The results of the QCNN and QMLP model for different threshold values. . 77

3.10 The QCNN and QMLP results with different thresholds applied on energie/pixel
values. 78

3.11 The results for the keep layer maximum approach for QCNN and QMLP. . . 79

3.12 The results for the QCNN and QMLP for different capping values. 80

3.13 The results for the QCNN applied after reduction of the longitudinal profile. 81

3.14 The results of the selection bit method for the QCNN and QMLP. 81

3.15 The results of the selection bit method applied after thresholding for the
QCNN and QMLP. 82

3.16 Uniform quantizer with different capping values for various quantization lev-
els, for the QCNN. 83

x

3.17 Uniform quantizer with different capping values for various quantization lev-
els, for the QMLP. 84

3.18 The results of nonuniform quantizer. 86

3.19 The results of four-class CNN and MLP classification. 88

3.20 The results of four-class CNN and MLP classification, with additional Chi-
square-based calculated features. 90

3.21 The results of four-class CNN and MLP classification, with additional Chebyshev-
distance-based calculated features. 92

3.22 The results of three-class CNN and MLP classification. 94

3.23 The results for the base CNN and MLP model for EM vs. different back-
grounds (PU or QCD). 96

3.24 The results for the base CNN and MLP model for EM vs. MIX. 96

3.25 The results for the QCNN and QMLP model for EM vs. MIX. 96

3.26 The results for the base CNN and MLP model for EM vs. different back-
grounds (PU or QCD). 96

3.27 The results for the base CNN and MLP model for EM vs. MIX. 97

3.28 The results for the QCNN and QMLP model for EM vs. MIX. 97

3.29 The NN models for EM vs. MIX. classification selected for FPGA implemen-
tation. 101

3.30 The Keras and hls accuracy for selected models. 101

3.31 The results of FPGA implementation for selected models model with preci-
sion determined on model level. The table also includes the total number
of DSPs, FFs, and LUTs, allowing for a direct comparison with the utilized
values. 102

3.32 The resource consumption for different levels of optimizations for the QCNN_U2
model. 104

xi

List of Figures

1.1 Overall view of the Large Hadron Collider, showing the ATLAS, CMS, AL-
ICE, and LHCb detectors [3]. 2

1.2 The collision energy (upper line) and the luminosity (lower line) are dis-
played in the LHC’s baseline plan for the next decade. LS refers to "Long
Shutdown", scheduled periods when the LHC is not operational. During this
time, significant maintenance, upgrades, and enhancements are undertaken
to improve its performance and prepare for future runs. The project equip-
ment will be in the high-luminosity configuration after LS3 [7]. 3

1.3 The forecast for luminosity value during the HL-LHC era, the peak luminos-
ity is indicated by red dots, while a violet line shows the integrated luminosity
[8]. 4

2.1 The illustration of a CMS transverse slice shows the different sub-detectors
and how they interact with individual particles. The solenoid produces a 4
Tesla axial field and requires a return yoke to control the field outside of the
solenoid, with a field strength of around 2 Tesla [37]. 11

2.2 Illustration of the CMS detector and its main components [39]. 12

2.3 Visual representation of the cartesian and polar coordinate system used in
CMS project [40]. 13

2.4 Relation between the polar angle θ and pseudorapidity η [40]. 13

2.5 The data processing flow in CMS experiment: Forty million collisions are
generated per second. The L1T selects 100 000 events, which are then passed
to HLT. Only 1000 events per second are kept for further studies [48]. . . . 16

2.6 Comparison of different computing architectures: flexibility vs. efficiency [28]. 17

2.7 A schematic view of the HGCAL: it covers a pseudorapidity range from 1.5 to
3. CE-E area is covered with silicon sensors, the same as the high-radiation
part of CE-H. Scintillator tiles are used for the low radiation part of CE-H
[55]. 19

2.8 Illustration depicting the process of trigger data reduction that occurs in the
front-end ASICs. The sensor cells, shown in (1), are grouped into trigger
cells represented by (2). During the data reduction process, only the most
energetic cells, indicated by (3), are selected and transferred for further pro-
cessing [57]. 21

xii

2.9 Schematic overview of the CMS L1 Phase-2 enhanced trigger architecture
[47]. 22

2.10 Classification of ML algorithms [72]. 24

2.11 Comparison of supervised and unsupervised learning [73]. 24

2.12 The relationship between model fitting and model complexity: the fitted model
is depicted as a grey line separating two classes in the data: red circles and
green squares. Overfitted models can fit to noise in the training data, while
underfitted models may miss important details [80]. 25

2.13 Illustration of SVM algorithm: optimal hyperplane (WX +b = 0) that effec-
tively separates different data classes [95]. The largest margin 2

∥W∥ can be
obtained by maximizing the distance between the hyperplane and its closest
point. 27

2.14 Illustration of RF algorithm: a number of decision trees are created. A final
result is created by aggregating the predictions of all the trees [103]. . . . 29

2.15 Visualization of the artificial neuron: it consists of input layer, one hidden
layer, and output layer [112]. 31

2.16 Illustration of the basic architecture of MLP: it consists of an input layer,
one or more hidden layers, and an output layer [115]. 33

2.17 Activation functions. 34

2.18 Illustration of the basic architecture of CNN: it consists of two convolutional
layers, each followed by a pooling layer. Classification is performed in the
fully connected layer on the end of the CNN [118]. 35

2.19 The distribution of sample numbers according to class. 44

2.20 Example of 3D EM cluster where dot size and color are proportional to
deposited pT . TCs participating in 5x5x36 image generation are bordered
black, and those not involved in image generation have red borders. 45

2.21 Visualizing the steps involved in creating one layer (13) image. 46

2.22 Example of generated 3D HGCAL image. 47

2.23 Histogram representing average longitudinal profiles for particles/classes
used in experiment. 48

2.24 Histogram representing distribution of all dataset values in case of EM vs
MIX (PU and QCD) dataset. 51

2.25 Distribution of pT across HGCAL layers for EM, PU and QCD showers used
in 3Ef+Hf approach. 52

2.26 Quantizer function y = Q(x) . 53

xiii

2.27 Visualization of traditional deposition axis (red) and the one based on the
longest consecutive layers (black). In the left EM sample (clusterID=3139240274),
the axes almost coincide, while in the right one (clusterID=3122017111),
they are significantly different. 55

2.28 HGCAL image (for EM clusterID=3122017111). 55

2.29 Visualization of traditional deposition axis (red) and the one based on the
PCA approach (black). For both clusters, the axes almost coincide. 56

2.30 Larger neural network models require more computing power, especially in
fully connected layers, but there’s an ongoing effort to reduce deep neural
network sizes. Despite this, there’s an exponential growth in model sizes due
to the need to solve increasingly complex problems with higher accuracy.
The pink-colored nodes in the graph represent AlexNet and VGG16 models,
now regarded as over-parameterized [173]. 57

2.31 ASCII diagrams showing architecture and parameters of CNN for EM vs
MIX classification scenario. 59

2.32 ASCII diagrams showing architecture and parameters of MLP for EM vs
MIX classification scenario. 59

2.33 QKeras implementation of quantized_relu function in a 2- (purple), 3-bit
(green and blue) and 6-bit (yellow) precision and for 0 or 1 integer bits.
For comparison, the unquantized ReLU function is depicted in orange in the
graph [31]. 61

3.1 Receiver Operator Characteristic (ROC) curves for EM vs MIX classifica-
tion. A calculated performance metric is the Area Under the Curve (AUC)
which is the integral of the ROC curve. 64

3.2 Examples of shifted EM showers. 65

3.3 A plot showing the most influential features of the MLP model, ranked by
their effect on predictions. The plot displays the SHAP value distribution for
each feature, with the x-axis representing the numerical value of the feature’s
influence on a specific prediction. 67

3.4 A visualization of SHAP local interpretation, calculating the SHAP values
for features of an individual sample. Red-shaded pixels indicate the features
that cause the model to predict that an HGCAL image depicts an EM shower,
while blue-shaded pixels indicate the features that push the model away from
predicting that an image belongs to a given class. (Remark: absorber layers
are not shown in the figure. Therefore, there are 14 CE-E + 21 CE-H layers.). 69

3.5 Distribution of weights for the 1st convolutional layer for each of tested
model with applied different quantization levels: 2,3,4,6,8,16. 70

3.6 The effect of weight/bias/kernel quantization level on CNN and MLP model:
(a) accuracy (as a function of bit width), (b) FNR (as a function of bit width). 71

xiv

3.7 ROC curves comparison for QCNN and QMLP. 72

3.8 Comparison of average clusters energies. 73

3.9 Visualization of feature analysis for optimized random forest classifier. . . 76

3.10 Comparison of generated 3D HGCAL image before and after applied thresh-
old. 78

3.11 Comparison of generated 3D HGCAL image before and after applied highest
in layer approach. 79

3.12 Model accuracy and FNR as a function of capping value. 80

3.13 Comparison of generated 3D HGCAL image before and after applied selec-
tion bit approach. 82

3.14 Model accuracy and FNR as a function of data bit width and capping value. 84

3.15 Comparison of generated 3D HGCAL image before and after applied uni-
form quantization. 85

3.16 Comparison of generated 3D HGCAL image before and after applied non-
uniform quantization. 85

3.17 ASCII diagrams showing architecture and parameters of CNN for multiclass
classification scenario. 87

3.18 ASCII diagrams showing architecture and parameters of MLP for multiclass
classification scenario. 88

3.19 Confusion matrix for four-class classification. 89

3.20 Average distribution of pt across HGCAL layers for EM, PU, QCD, and
pions showers. 89

3.21 Confusion matrix for four-class classification, with additional Chi-square-
based calculated features. 91

3.22 Confusion matrix for four-class classification, with additional Chebyshev-
distance-based calculated features. 92

3.23 The distribution of sample numbers according to class, with PU and QCD
joined in MIX background. 93

3.24 ASCII diagrams showing architecture and parameters of CNN for joined
multiclass classification scenario. 94

3.25 ASCII diagrams showing architecture and parameters of MLP for joined
multiclass classification scenario. 94

3.26 Confusion matrix for three-class classification. 95

3.27 Diagram showing main FPGA building blocks [28]. 98

xv

3.28 A schema representing the typical workflow for converting a model into an
FPGA implementation using hls4ml [30]. 99

3.29 Visualization of FPGA building blocks tasks in NN inference [28]. 99

3.30 Activations part of “final/after optimization” graphs for QCNN_UNIQ2.
The box and whisker chart represent the distribution of the values required
for the keras model, while the grey shaded boxes show the range which can
be represented with the precision defined by hls4ml configuration settings. 103

xvi

List of Acronyms

2D Two-Dimensional
3D Three-Dimensional
ACC Accuracy
AI Artificial intelligence
ALICE A Large Ion Collider Experiment
ANN Artificial Neural Network
ASIC Application-Specific Integrated Circuits
ATLAS A Toroidal LHC Apparatus
AUC Area Under the Curve
BDT Boosted Decision Tree
BRAM Block Random Access Memory
CDF Collider Detector at Fermilab
CE-E Electromagnetic Section
CE-H Hadronic Section
CERN European Organization for Nuclear Research
CMS Compact Muon Solenoid
CMSSW CMS Software Components
CNN Convolutional Neural Network
CPU Central Processing Unit
CSC Cathode Strip Chamber
DSP Digital Signal Processor
DT Drift Tube
DUNE Deep Underground Neutrino Experiment
ECAL Electromagnetic calorimeter
EM Electromagnetic
FE Feature Extraction
FF Flip-Flop
FN False Negative
FNR False Negative Rate
FP False Positive
FPGA Field Programmable Gate Array
FPR False Positive Rate
FS Feature Selection
FZ Float Zone

GEM Gas Electron Multiplier
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
HCAL Hadronic calorimeter
HDL Hardware Description Language
HEP High Energy Physics
HGCAL High Granularity Calorimeter
HL-LHC High Luminosity LHC
HLS High-Level Synthesis
HLT High-Level Trigger
L1T Level 1 Trigger
LHC Large Hadron Collider
LHCb Large Hadron Collider beauty
LS Long Shutdown
LSTM Long Short-Term Memory
LUT LookUp Table
PU Pile Up
MC Monte Carlo
ML Machine Learning
MLP Multilayer Perceptron
NN Neural Network
PF Particle Flow
QCD Quantum Chromodynamics
RF Random Forrest
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic
ROI Region of Interest
RPC Resistive Plate Chambers
RTL Register Transfer Level
SHAP Shapley Additive Explanations
SOTA State-Of-The-Art
SVM Support Vector Machine
TC Trigger Cell
TLU Threshold Logic Unit
TN True Negative
TNR True Negative Rate
TP True Positive

xviii

TPG Trigger Primitive Generators
TPR True Positive Rate

xix

xx

1 INTRODUCTION

The 21st century has witnessed a technological revolution, the impact of which is visible
in many aspects of life. One area of study that plays a crucial role in this transformation
is machine learning (ML). The digital footprints left by sensors, connected devices, and the
Internet have generated a huge amount of information. ML’s data-centric approach is essen-
tial for uncovering the valuable insights hidden within enormous amounts of data. This field
of study, which often serves as the foundation for artificial intelligence (AI) applications,
has infiltrated all aspects of our daily lives, from virtual personal assistants on our phones
to self-driving cars. Although the original development was purely for scientific purposes,
today, ML profoundly impacts industries, healthcare, finance, and more. The field of ML
is currently being revolutionized by neural networks (NN), which are ML models inspired
by the structure and function of the human brain. Their ability to learn from data, recog-
nize patterns, and make predictions has made them useful in various fields, particularly in
high-energy physics (HEP).

1.1 Motivation

The Large Hadron Collider (LHC) [1] experiment, organized by the European Organization
for Nuclear Research (CERN), represents the peak of scientific research in particle physics.
Its revolutionary discoveries deepened the understanding of the universe and raised technol-
ogy and international cooperation to a new level. LHC is the world’s largest particle ac-
celerator, employing thousands of superconducting magnets to accelerate and steer particle
beams in opposite directions inside a 27-kilometer ring. Inside the accelerator tube, protons
collide, creating unstable particles that rapidly decay into a cascade of more stable particles.
The collisions occur at four locations - detectors around the accelerator ring: A Toroidal
LHC Apparatus (ATLAS), a Compact Muon Solenoid (CMS) [2], A Large Ion Collider Ex-
periment (ALICE), and a Large Hadron Collider beauty (LHCb), as shown on Figure 1.1.
ATLAS is a general-purpose detector that shares the scientific goals of CMS experiments but
uses different technical solutions and a different magnet-system design. As the topic of this
thesis concerns the processing of data obtained by collisions in CMS, this detector will be
described in more detail in the Chapter 2.1. The ALICE detector aims to study the physics
of strongly interacting matter at the highest energy densities. At the same time, LHCb is

1

Chapter 1: INTRODUCTION

specialized in investigating the slight differences between matter and antimatter by studying
a type of particle called the "beauty quark", or "b quark".

Figure 1.1. Overall view of the Large Hadron Collider, showing the ATLAS, CMS, ALICE,
and LHCb detectors [3].

It is important to note that proton-proton collisions are not limited to the primary hard-
scattering event. They also involve many concurrent soft collisions, named pile-up (PU),
which deposit additional energy in the detector parts. These energy deposits complicate iden-
tifying the resulting particles, which can significantly impact the understanding and studying
of the primary results of collisions.

The LHC operates in several phases, as shown in Figure 1.2, each with specific goals and
energy levels. Periods of physics production, where protons or heavy ions collide, alternate
with shutdown periods. Those are crucial periods when essential repairs and upgrades oc-
cur, ensuring optimal performance and functionality. The initial system worked effectively
during LHC Run 1, and Francois Englert and Peter W. Higgs were awarded the Nobel Prize
in Physics in 2013. "for the theoretical discovery of a mechanism that contributes to our
understanding of the origin of mass of subatomic particles, and which recently was con-
firmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS
experiments at CERN’s Large Hadron Collider" [4].

To provide a more extensive data set that would increase the potential for discoveries, the
integrated luminosity (total number of collisions) steadily increased throughout LHC Run 2.
Currently, the LHC is in the Run 3 data collection phase since 2022. The LHC is undergoing
a critical upgrade to greatly expand its physics reach by rigorously increasing peak luminos-
ity (rate of collisions - the number of potential collisions per unit area per second) by a factor
of five beyond the original design value (to 5x1034cm−2s−1) [5]. Although the construction
work for the HL-LHC is currently in progress, the installation and upgrade will occur during
the LS3 period. The concept of luminosity is the proportionality factor between the number

2

Chapter 1: INTRODUCTION

of events per second dR/dt and the cross-section σ and can be calculated using

L =
1
σ

dR
dt

. (1.1)

Another evaluation parameter is the integrated luminosity, proportional to a number of events
of interest [6], calculated as

Lint =
∫ T

0
L(t)dt. (1.2)

5 to 7.5 x nominal Lumi

13 TeV

integrated
luminosity

2 x nominal Lumi2 x nominal Luminominal Lumi
75% nominal Lumi

cryolimit
interaction
regions

inner triplet
radiation limit

LHC HL-LHC

Run 4 - 5...Run 2Run 1

DESIGN STUDY PROTOTYPES CONSTRUCTION INSTALLATION & COMM. PHYSICS

DEFINITION EXCAVATION

HL-LHC CIVIL ENGINEERING:

HL-LHC TECHNICAL EQUIPMENT:

Run 3

ATLAS - CMS
upgrade phase 1

ALICE - LHCb
upgrade

Diodes Consolidation
LIU Installation

Civil Eng. P1-P5

experiment
beam pipes

splice consolidation
button collimators

R2E project

13.6 TeV 13.6 - 14 TeV

7 TeV 8 TeV

LS1 EYETS EYETS LS3

ATLAS - CMS
HL upgrade

HL-LHC
installation

LS2

30 fb-1 190 fb-1 450 fb-1 3000 fb-1

4000 fb-1

BUILDINGS

20402027 20292028

pilot beam

Figure 1.2. The collision energy (upper line) and the luminosity (lower line) are displayed
in the LHC’s baseline plan for the next decade. LS refers to "Long Shutdown", scheduled

periods when the LHC is not operational. During this time, significant maintenance,
upgrades, and enhancements are undertaken to improve its performance and prepare for
future runs. The project equipment will be in the high-luminosity configuration after LS3

[7].

The integrated luminosity will be increased by a factor of ten (to 4000 f b−1), as shown
in Figure 1.3, leading to an increase in the average number of proton-proton collisions per
bunch crossing (pile-up, PU) to around 200. Such an enormous number of particles pro-
duced in collisions and their induced radioactivity can significantly damage detectors and
electronics.

Therefore, parts of LHC equipment, mostly detectors ATLAS and CMS, must be modi-
fied to deal with the upgraded performance. The updated system must be radiation-tolerant
and capable of handling high PU, particularly at the trigger level. The trigger plays a crucial
role in the data acquisition system by selecting a subset of collision events and filtering out
only the most scientifically significant ones for further analysis. To address these challenges,
CMS proposes an innovative solution: the replacement of the crucial part of trigger architec-
tures, endcap calorimeters, with the High-Granularity Endcap Calorimeter (HGCAL). The

3

Chapter 1: INTRODUCTION

hardware improvement enables the development and use of advanced low-latency trigger
algorithms that effectively and accurately select crucial events from the vast amount of gen-
erated data. With its state-of-the-art technological advancements, the new configuration,
named High Luminosity LHC (HL-LHC), surpasses existing accelerator limits.

Figure 1.3. The forecast for luminosity value during the HL-LHC era, the peak luminosity is
indicated by red dots, while a violet line shows the integrated luminosity [8].

1.2 Literature Review

In the field of HEP, innovative approaches to data analysis, pattern recognition, and inter-
pretation are constantly needed to drive revolutionary discoveries. Traditional analytical
approaches, which are reliant on manual data exploration and interpretation, are encounter-
ing significant challenges in managing the scale and complexity of the data. Consequently,
for several years, researchers have turned to ML techniques as an efficient means to process
these large volumes of data in HEP experiments.

ML was first applied to HEP analysis in the 1990s, and since the 2010s, it has been
widely used in particle and event identification and reconstruction. In their review article
[9], the authors discuss the implementation details, resource requirements, and development
areas of ML in particle physics. In the beginning, Boosted Decision Trees (BDT) were the
most extensively utilized ML algorithm in HEP [10, 11], mostly used to classify particles
and events. The usage of NNs in HEP started in 1987 when Denby in [12] suggested us-
ing NN for track reconstruction and cluster finding. The initial use of NNs and other ML
methods relied heavily on manual feature engineering, which demanded a more in-depth
understanding of particle decay phenomenology. In 2014, Baldi [13] showed that in some
classification problems in HEP, shallow NNs using low-level data achieve almost the same
performance as those using high-level features, which opened up new possibilities for using
NNs in HEP problems. Manual feature engineering, used for traditional approaches, can be a

4

Chapter 1: INTRODUCTION

time-consuming and incomplete process, so relying on NNs to extract relevant features from
raw data automatically is the more efficient and effective solution. The advancements in com-
puting technology have facilitated the greater application of NNs in many domains, such as
image and speech recognition, natural language processing, and predictive analytics. As a re-
sult, NNs have become a popular choice among scientists, as they offer superior performance
in many complex and challenging tasks, including those that involve high-dimensional data,
complex patterns, and non-linear relationships. Therefore, in recent years, there has been a
notable trend in the employment of NN.

An innovative approach to using NNs to process detector data was proposed by Cogan et
al. [14], who recognized that the projection of the calorimeter structure, which is present in
almost all detectors used in HEP, is similar to image pixels. This way of data representation
allowed physicists to use new tools in image processing, Convolutional Neural Networks
(CNNs). Authors in [15–17] employ CNN for the classification of particle collisions, in
[18] CNN is applied in the filtering of track pixel seeds while authors in [19] use CNN for
anomaly detection. Other advanced NN architectures are also used in HEP: in [20] distance-
weighted graph NN is used for particle reconstruction, generative adversarial networks are
often used for simulation of physical events [21, 22], and in [23] authors use automated tool
based on autoencoder for CMS Resistive Plate Chambers (RPC) current monitoring to ensure
stable operation.

HEP experiments typically employ complex trigger systems to select physically interest-
ing events from the data stream. The first who suggested the use of NNs for triggering was
Denby, 1990. In [24], he presented the idea of using NN to increase the trigger efficiency in
the Collider Detector at Fermilab (CDF) experiment. The available dataset was small, with
450 samples, and the region of interest (ROI) was a cell in the calorimeter with the highest
energy deposit, covering an 8x8 area. There was a massive gap between training and testing
accuracy for suggested feedforward NN, and the plan was to implement NN in hardware.
Although NNs have been widely used in physics analysis due to constrained conditions and
low latency requirements, they are not frequently applied in low-level triggering. In high-
level CMS triggers, where there are no such resource constraints, NNs are used to label jets,
sprays of particles produced by the hadronization of quarks and gluons. However, due to
the limited size, required latency, and radiation exposure, the traditional approach to NNs
is not acceptable in CMS Level 1 Trigger (L1T). For this reason, work has begun on new
approaches that enable NN usage in limited conditions.

The reduction of memory and processing requirements while preserving the accuracy of
the NN was attempted by quantization of the network. The first efficient approach to aggres-
sive NN quantization was presented in 2015 by Courbariaux et al. [25] with BinaryConnect,
an NN that uses binary weight values while maintaining accuracy. In their study, Rastegari
et al. [26] introduced XNOR-Net, a binary convolutional neural network that was tested on
the ImageNet dataset. The researchers experimented with two different approaches. The

5

Chapter 1: INTRODUCTION

first approach involved binarizing only the weights of the network, which the researchers
called Binary-Weight-Networks. The second approach, which they called XNOR-Networks,
involved binarizing both the weights and the input to the network. Both approaches were
able to save approximately 32 times (more) memory. This was made possible by using bi-
nary weights, which allowed convolutions to be performed without using the multiplication
operation. As a result, the first approach achieved an inference speedup of approximately 2
times, while the second approach achieved a speedup of approximately 58 times, compared
to the model that used complete precision for the network and data.

The reduction in model size and the development of machine learning-compatible Field-
Programmable Gate Array (FPGA) devices have created new opportunities for implementing
NNs on L1T. The use of ML on FPGAs is an area of active research, with limited resources
impacting the size and complexity of potential models.

An early attempt to deploy a CNN for particle track reconstruction on an FPGA was
presented at NIPS 2017 [27]. Today, the implementation of ML models on edge devices is
possible using a dedicated tool such as hls4ml [28, 29], a library for interpreting and trans-
lating ML algorithms into hardware-readable code. The created library contains numerous
techniques that enable the implementation of low energy consumption and increased us-
ability and is fully compatible with QKeras, a quantization extension to Keras. The first
who employed hls4ml are authors in [30], where they present a fully connected classifier
(based on high-level features) for jet substructure implemented in FPGAs. The quantized
model achieved an Area Under the Curve (AUC) value of 99.55% with a latency of 75 ns.
Additionally, a detailed description of the translation process of an NN into an FPGA im-
plementation is provided in the paper. The same dataset was used in the [31], where authors
also introduced QKeras. After implementing quantized models with hls4ml in FPGA, it is
demonstrated that resource utilization can be reduced by up to 98% without significant loss in
model accuracy while performing inference within O(10) ns. Two multi-class classification
tasks are considered in [32]: handwritten digit recognition with the MNIST dataset and jet
identification in simulated proton-proton collisions at LHC. The developed models undergo
aggressive quantization into binary and ternary networks, which are then implemented in
FPGA. Upon comparison with binary models, ternary models demonstrate significantly im-
proved accuracy values that closely align with the original baseline models, with a smaller
resource cost, and with comparable latency. In the publication [33], a continuation of the
QKeras/hls4ml approach is presented. This work introduces an extension to the hls4ml li-
brary, which facilitates the implementation of convolutional architectures. The created CNN
model is used as a digit classifier on the Street View House Numbers Dataset. After conver-
sion to FPGA firmware, it can be executed with 5 µs latency while consuming less than 10%
of the FPGA resources. Due to its proven efficiency, implementing NN models in FPGA
using hls4ml has become an active area of research [34–36].

The research results show that aggressive quantization techniques can help an NN model

6

Chapter 1: INTRODUCTION

meet the challenging L1T requirements. The proposed input data selection and quantiza-
tion methods can further reduce model size. By utilizing appropriate hls4ml configuration
settings, additional resources can be saved, leading to reduced latency.

1.3 Hypothesis

The primary objective of this doctoral research is to develop a novel principle for the real-
time selection of physically significant events, such as electromagnetic (EM) showers, uti-
lizing the power of artificial intelligence algorithms, particularly NNs. This selection is a
crucial part of the CMS real-time trigger system implemented on the FPGA devices. Al-
though used FPGA devices represent the state of the art, they still have limited capabilities
compared to the Central Processing Unit (CPU) and Graphics Processing Unit (GPU) based
devices on which NNs are usually running. However, FPGAs are preferred in L1T systems
due to their low latency, parallel processing capabilities, flexibility, and efficiency. These
characteristics make FPGAs suitable for the real-time data processing demands of HEP ex-
periments. This research aims to enable efficient real-time selection by extracting hidden
insights from the raw detector data using quantized NNs combined with data selection and
quantization techniques.

As a result of this research, the following hypotheses have been proposed:
• H1: Standard neural network architectures can be adapted to classify physically im-

portant events in real-time and under conditions of limited computing resources while main-

taining the classification accuracy of CMS level 1 triggers.

• H2: It is possible to implement developed architectures of neural networks and other

machine learning algorithms in a form suitable for operation on FPGA devices. Additional

improvements in FPGA performance can be achieved by appropriately selecting and aggres-

sively quantizing the input data of the neural network.

• H3: It is possible to implement a new model of generating input data (images) obtained

based on the CMS simulator for application in neural networks and other machine learning

algorithms.

The first hypothesis (H1) is based on the model’s quantization principle, which would
significantly reduce the model’s size and, therefore, its need for memory and computing
resources. By developing and testing neural network models, quantized Multilayer Percep-
tion (MLP), and Convolutional Neural Network (CNN), it is possible to classify EM signals
from different backgrounds (other signals or noise that can be detected along with the EM
showers) with high accuracy. The performance and efficiency of proposed NN models are
examined using standard metrics, such as accuracy, AUC, true positive rate (TPR), and true
negative rate (TNR). Based on the obtained results, it is possible to impact the TPR and TNR
values using different threshold values, depending on preferences.

The second hypothesis (H2) assumes that it is possible to implement developed models

7

Chapter 1: INTRODUCTION

on FPGA devices used for level 1 triggering. Analyzing and selecting the optimal precision
needed for individual model layers is possible using appropriate profiling tools. It leads to
additional resource savings, looking specifically at the number of used Block Random Ac-
cess Memories (BRAMs) and LookUp Tables (LUTs) while simultaneously lowering the
latency time. As FPGA devices are simultaneously divided between a large number of ap-
plications and triggers, each saving significantly contributes to the functionality of the entire
system. Furthermore, the empirical evidence suggests that the implemented models not only
reduce resource consumption but also meet the required latency, as described in Chapter 3.4.
This highlights the efficiency and effectiveness of the models, making them a valuable asset
to any project seeking to optimize its resources.

The third hypothesis (H3), described in Chapter 2.5 is based on the assumption that HG-
CAL images based on energy deposits on calorimeter layers could be improved if, instead
of the cluster barycenter, the emphasis would be on observing the longest sequence of de-
posited energies. This assumption particularly applies to PU images, where the decay may
occur in a direction other than the beamline. As the quality of images describing the decay of
particles is directly responsible for the correct selection of physically interesting events, this
new approach could improve the accuracy of the trigger algorithm i.e. proposed NN models.

1.4 Dissertation Outline

The research is divided into theoretical and empirical parts in accordance with the objectives
stated in the previous section. The initial part of the theoretical research given in Chap-
ter Materials and Methods 2 describes the CMS detector, including its subdetectors and
their functions. Additionally, the research clarifies the challenges associated with detector
upgrades required for efficient operation in the project’s HL-LHC era. Subsequently, the
section provides a detailed analysis of the CMS Trigger functionality. One of the main chal-
lenges with the CMS upgrade is to develop an algorithm that can efficiently select events of
interest to the CMS upgrade.

The following section 2.2 provides a comprehensive summary of the ML algorithms used
in the thesis. The proposed algorithms include fully connected NN and convolutional NN.
The performance of these algorithms will be compared with other well-known ML methods,
such as support vector machines and random forests. In addition to this, the thesis explores
existing solutions for using ML to solve various HEP problems in the literature. It will
provide a complete analysis of the current state of described ML algorithms in HEP, with a
focus on NN. It will highlight the most promising approaches and outline areas that require
further development and research.

The hypotheses that have been presented will be put to the test in the empirical section
of the thesis, chapter 3. The development of an application that generates HGCAL images
based on data collected from the CMSSW simulator is a crucial aspect of empirical research.

8

Chapter 1: INTRODUCTION

The hypotheses presented earlier will be evaluated using generated images based on the find-
ings from the theoretical section. The developed NN models are put to the test by evaluating
their performance using standard metrics such as accuracy, precision, and recall. The final
step is to implement the most successful models in hls4ml. The results obtained from the
empirical analysis are examined to determine whether the proposed approach is suitable and
can be implemented in practice in the incoming LHC phase. Finally, chapter 4 covers the
general discussion, conclusions from the research, and future research directions.

For this research study, the computations were carried out in different environments.
Data simulation was done using CMSSW 12.1. Image generation and ML model devel-
opment were done on a laptop computer, MacBook Pro, with a 2.6 GHz Dual-Core Intel
Core i5 processor and 8 GB 1600 MHz DDR3 RAM. The operating system was IOS macOS
Catalina, version 10.15.4, which provided a stable and reliable environment. The program-
ming language used was Python 3.8.5, with Keras 2.15.0, TensorFlow 2.4.1, and QKeras
0.8.0. Finally, FPGA implementation was done on Xilinx Virtex UltraScale, part number
xcvu13p-fhgb2104-2-e, by using Vivado HLS 2020.1 and hls4ml 0.6.0.

9

Chapter 1: INTRODUCTION

10

2 MATERIALS AND METHODS

The chapter begins with a description of the CMS detector, focusing on the parts relevant
to this thesis. After that, an overview of the ML techniques used in HEP is provided. The
subsequent sections cover the creation of the dataset, the development of the NN models,
and proposed reduction methods.

2.1 The CMS Detector

CMS is one of four LHC detectors located on the accelerator tube at one of the points where
protons collide in the LHC’s ring. As a result of the collisions, new unstable particles are
generated, which immediately break apart. Decay products disperse in all directions and
interact with detector layers made of different materials, as shown in Figure 2.1. The results
of the interactions provide a 3D image of the observed collisions, whose analysis can lead to
discoveries of new physical phenomena.

Figure 2.1. The illustration of a CMS transverse slice shows the different sub-detectors and
how they interact with individual particles. The solenoid produces a 4 Tesla axial field and

requires a return yoke to control the field outside of the solenoid, with a field strength of
around 2 Tesla [37].

11

Chapter 2. MATERIALS AND METHODS

One of the most significant scientific breakthroughs in particle physics, the discovery
of the Higgs boson that confirmed the existence of the Brout–Englert–Higgs mechanism,
was made possible with the help of the CMS detector [38]. The CMS, one of two general-
purpose detectors at the LHC, has made crucial discoveries in particle physics in tandem with
ATLAS. Although they share scientific goals, each detector uses different technical solutions
and event reconstruction software.

The Compact Muon Solenoid (Figure 2.2) is named after its three main characteristics.
First, its compactness: even though ATLAS is almost twice as large as CMS, CMS is double-
weighted due to the detector material it accommodates, making it more massive at 14 000
tons. Secondly, detecting muons is at the forefront of CMS’ design, making it a powerful
tool for uncovering thrilling discoveries in physics. Unlike electrons and mesons, muons
can only come from the decay of heavy particles, which makes them easily identifiable and
possibly interesting. Lastly, at the center of CMS, is a 13 m long superconducting solenoid
with a 6 m inner diameter, providing a magnetic field of 3.8 T, which was the most powerful
one ever built at the time of its creation. To achieve accurate measurement of the momentum
of charged particles, a magnetic field of significant strength is an absolute necessity.

Figure 2.2. Illustration of the CMS detector and its main components [39].

12

Chapter 2. MATERIALS AND METHODS

2.1.1 Coordinate System and Conventions

The CMS uses a right-handed coordinate system, with the origin located at the nominal
collision point (where particles are expected to collide). The z-axis points along the beam
axis (toward the Jura mountains), the y-axis points vertically upwards, and the x-axis points
inwards to the center of the collider ring, as shown in Figure 2.3.

Figure 2.3. Visual representation of the cartesian and polar coordinate system used in CMS
project [40].

Since the detector has a cylindrical structure, a polar coordinate system is also used.
The azimuthal angle φ is measured from the x-axis in the x-y plane while the polar angle
θ is measured from the z-axis. The polar angle is usually transformed into pseudorapidity,
defined as

η =−ln tan
θ

2
(2.1)

which can have values from 0 at θ = π

2 to ±∞ at θ = 0(π), as visible in Figure 2.4.

Figure 2.4. Relation between the polar angle θ and pseudorapidity η [40].

13

Chapter 2. MATERIALS AND METHODS

Another kinematic variable that is suitable for describing collisions in a CMS detector is
the transverse momentum pT , the component of momentum perpendicular (i.e. transverse)
to the beam line, calculated with

pT =
√

p2
x + p2

y (2.2)

where px and py are the components of the momentum of a particle along the x-axis and
y-axis.

The angular distance R is the measure of the apparent separation between two particles
expressed as

∆R =
√

(∆η)2 +(∆φ2). (2.3)

Defined parameters provide crucial information about particle interactions and simplify the
analysis of complex events.

2.1.2 Subdetectors

As it is visible from Figure 2.1 and Figure 2.2, CMS consists of layers of subdetectors that
utilize different materials to capture and measure particle energy and momentum. Its main
sub-detectors (going from the inside out) are an inner tracker, an Electromagnetic calorimeter
(ECAL), a Hadronic calorimeter (HCAL), and muon chambers. The tracker, ECAL, and
HCAL are all housed within the superconducting solenoid magnet, while the muon chambers
are outside the magnet but within its magnetic field.

2.1.2.1 The Inner Tracker

The inner tracking system lies at the core of the detector setup surrounding the collision in-
teraction point. The tracker comprises concentric layers of silicon sensors, each of which is
completed by endcaps that extend its acceptance up to a pseudorapidity of |η|< 2.5. It com-
prises pixel and strip detector modules, capturing the spatial position of the particle passage.
The pixel detector is made up of 66 million pixels, covering approximately 1 m2 in total
area. It is surrounded by the strip tracker, which has 10 million read-out channels and covers
approximately 200 m2 of total area [41]. Using the obtained data, it is possible to precisely
and efficiently measure the trajectories of charged particles produced in LHC collisions and
accurately reconstruct secondary vertices. The drawback of tracker technologies is the im-
possibility of detecting neutral particles, which is not the case with subsequent subdetector
layers, the Electromagnetic calorimeter, followed by a Hadronic calorimeter.

2.1.2.2 Calorimeters

When particles collide, they create unstable particles that decay almost immediately after
their creation before reaching the calorimeters. The rest of the decay products interact with

14

Chapter 2. MATERIALS AND METHODS

the calorimeter layers, producing cascades of low-energy secondary particles, known as par-
ticle showers. Over time, these low-energy particles are absorbed. They deposit energy into
the calorimeters, which is then measured and analyzed.

The electromagnetic calorimeter is a hermetic, homogeneous calorimeter composed of
fast and compact lead tungstate (PbWO4) crystals, which are mounted in the central barrel
and two endcaps [42]. Each crystal is equipped with two silicon avalanche photodiodes on
the barrel part and vacuum phototriodes on endcaps, used as photodetectors determining the
energy and the position of the particles [42, 43]. To enhance the detection capabilities, a pre-
shower detector is positioned in front of the endcap crystals. The main goal of the ECAL
is to measure the energy of particles that interact electromagnetically. ECAL records two
prominent cases: the first case is particles that get absorbed and release their full energy in
ECAL, such as electrons, positrons, and photons. The second case involves charged and
neutral hadrons, which can initiate hadronic showers in the ECAL and are then completely
absorbed in the hadron calorimeter.

The Hadronic calorimeter is located behind the tracker and the ECAL. It measures
the timing, energy, position, and angle of particles interacting hadronically, like protons,
neutrons, pions, and kaons. The main parts of HCAL, the barrel and endcap, are located
inside the magnetic field; both consist of alternating layers of brass and plastic scintillator
plates as active material [44]. The outer and a forward hadronic calorimeter are extended
beyond the magnet. The outer calorimeter utilizes the CMS magnet coil/cryostat, and the
steel of the magnet return yoke as its absorber. The forward calorimeter is based on different
technologies and is not discussed in this thesis.

2.1.2.3 The Muon Chambers

The detection of muons is of central importance to CMS because they are expected to be
produced in the decay of a number of potential new particles. Muons are low-interacting
particles that pass the calorimeters’ layers without significant interaction, and having a life-
time long enough to leave CMS, they are detected in the outermost shell of CMS detector,
muon chambers. They cover very large areas (O(100 m2)), characterized by low occupancy
and low radiation levels. The CMS Muon System is composed of different types of gas detec-
tors, namely, Drift Tubes (DTs), Cathode Strip Chambers (CSCs), RPCs, and Gas Electron
Multipliers (GEMs). DTs can identify muon tracks in the barrel part of the detector, while
CSCs are primarily used in the endcap disks where the magnetic field is uneven, and particle
rates are higher than in the barrel. RPCs, on the other hand, are fast gaseous detectors that
provide a muon trigger system parallel to those of the DTs and CSCs. Finally, GEMs com-
plete the system, enabling optimum trigger performance with maximum selection efficiency
of muons even in a high flux environment [42, 45].

15

Chapter 2. MATERIALS AND METHODS

2.1.3 Trigger System

Retaining all the events generated at CMS for analysis is not feasible due to limited storage
and processing capabilities. Besides, most of the generated events are low-energy glancing
collisions that do not lead to revealing new phenomena. Therefore, a data reduction system is
necessary to drastically reduce the data rate by selecting only potentially interesting events,
which can be saved for subsequent offline analysis.

Experiments described in [42, 46, 47] adopt a two-level approach in selecting events of
potential physics interest. In contrast, the ATLAS trigger system employs a more complex
three-level approach. The first step in CMS data selection is the Level-1 Trigger, imple-
mented in custom-designed electronics, followed by the High-Level Trigger (HLT), a simpli-
fied version of the CMS offline reconstruction software that operates on a computer cluster.
L1T reduces the incoming data stream from 40 million events/s (bunch crossing rate) to 100
thousand events/s by discarding over 98% of the generated events while the HLT additionally
reduces the data flow to 1000 (0.025‰) events per second, Figure 2.5.

Figure 2.5. The data processing flow in CMS experiment: Forty million collisions are
generated per second. The L1T selects 100 000 events, which are then passed to HLT. Only

1000 events per second are kept for further studies [48].

2.1.3.1 The First Level Trigger

The L1T is a real-time system, selecting events containing detector signals consistent with
an electron, photon, muon, τ lepton, jet, or missing transverse energy. It is implemented
in Application-Specific Integrated Circuits (ASIC) chips and FPGA devices, with a typical
latency of O(1) µs. There are several reasons why FPGAs are chosen for devices that run ML
inference. First, the possibility of parallelism (many resources work on different parts of the
problem simultaneously) makes them extremely efficient. Second, they exhibit predictable
real-time latencies, which is of ultimate importance for L1T applications. Finally, they tend
to consume less power than GPUs or CPUs while solving similar problems. Taking into
account all the above and considering the ratio between flexibility and efficiency for each of
the available architectures (Figure 2.6), it has been decided that FPGAs are the best choice
for the L1T architecture.

16

Chapter 2. MATERIALS AND METHODS

Figure 2.6. Comparison of different computing architectures: flexibility vs. efficiency [28].

The L1T relies on coarsely segmented data collected from the calorimeters and the muon
system to make rapid decisions. The high-resolution data is stored in pipelined memories
in the front-end electronics for later analysis. This approach allows the L1T to quickly and
efficiently filter out uninteresting events while maintaining high precision through the use of
fine-grained data in later stages of analysis.

The L1T system is divided into local, regional, and global components, after which the
Global Trigger makes the final decision.

2.1.3.2 High-Level Trigger

Events that pass through L1T are processed by a High-Level Trigger (HLT) consisting of
computer farms. The HLT system can access the entire readout, enabling it to perform
intricate computations on precise and complete data sets. This allows for the execution of
complex analysis similar to that carried out in offline software. Since HLT algorithms are
not included in this thesis topic, the HLT system is not described here. More information
may be found in [49, 50].

2.1.4 The CMS Upgrades for HL-LHC

To exploit the complete physics potential of the HL-LHC and simultaneously deal with the
huge amount of generated data and unprecedented amount of radiation, LHC detectors, in-
cluding CMS, are going through extensive upgrades during the shutdown periods. The high
radiation doses in the HL-LHC environment require radiation-hard technologies to prevent
equipment damage. Also, there is a need to develop strategies for dealing with the challenges
posed by a high PU environment, including high occupancies, high data rates, and complex
event reconstruction. The requested specifications have highlighted the necessity to enhance
the energy resolution of jets in calorimeters. The CMS system utilizes the idea of "particle
flow" (PF) to reconstruct events: individual particles, such as electrons, muons, photons, and
hadrons, are identified and reconstructed by combining information from all detector parts
[51, 52]. The CMS experiment relies heavily on the PF flow event-reconstruction algorithm

17

Chapter 2. MATERIALS AND METHODS

in most of its analyses. The PF algorithm requires comprehensive and accurate measurement
of the energy and momentum of each particle necessary in the PF steps. The first step (for
charged particles) is track reconstruction. Then follows the clustering of energy deposits
in the calorimeters and linking them to particular reconstructed tracks. Characteristics of
the determined clusters can be essential for some particle identification, while, for example,
muon identification requires a combination of information coming from tracker and muon
chambers. It is evident that two crucial elements for particle flow are accurate tracking of
charged particles in the inner detector and high-resolution calorimetry to differentiate contri-
butions from nearby particles. The L1T system used in previous phases of the project does
not meet the required properties.

Some of the most important CMS detector upgrades implemented to ensure valid perfor-
mance in the HL-LHC phase include:

• Tracker

If the integrated luminosity exceeds 500 f b−1, the current tracker settings’ perfor-
mances will be seriously degraded. Therefore, a new tracker is needed that has in-
creased granularity and extended coverage up to |η| ∼ 4 and is capable of efficient
tracking in L1T.

• Calorimeters

The current structure of the calorimeter endcap is insufficient to handle the anticipated
high levels of radiation and event accumulation. The existing forward calorimeters,
the electromagnetic calorimeter, and the hadron calorimeter, were designed for an in-
tegrated luminosity six times lower than the one planned in the HL-LHC phase [53].
Under new conditions, these settings expect performance degradation, leading to an
unacceptable loss of discoveries in physics. Therefore, each endcap will be replaced
with a new HGCAL [54]. This update will enable 3D shower imaging and more precise
timing, making it the most significant improvement. Unlike homogeneous calorime-
ters, where the same medium serves as both absorber and detector, sampling calorime-
ters consist of layers of passive absorber that alternate with the active detector layers.
The HGCAL is an advanced sampling calorimeter that uses silicon and plastic scin-
tillators as its active components and Lead, Copper-Tungsten, Copper, and Stainless
Steel as absorbers. A schematic view of the HGCAL is shown in Figure 2.7.

The material, layout, and thickness of the sensors in the HGCAL layers vary depend-
ing on their position. Active silicon sensors will be used in high-radiation areas with
high track density. Hence, the entire electromagnetic segment (CE-E) and the inner
hadronic compartment (|η|> 2.4) will be constructed using silicon sensors. The sen-
sors are hexagonal on 8-inch wafers, maximizing sensor area and allowing for full
coverage tiling. In the CE-E area, copper, copper-tungsten, and lead are used as ab-

18

Chapter 2. MATERIALS AND METHODS

sorbers. Plastic scintillator tiles will be used for the lower radiation region of CE-H
with steel as an absorber and readout by on-tile silicon photomultipliers (SiPMs).

Figure 2.7. A schematic view of the HGCAL: it covers a pseudorapidity range from 1.5 to 3.
CE-E area is covered with silicon sensors, the same as the high-radiation part of CE-H.

Scintillator tiles are used for the low radiation part of CE-H [55].

The CE-E consists of 28 layers altogether per endcap. In comparison, the hadronic part
consists of 22 layers per endcap, 8 of which are Si layers and 14 are Si + scintillator
mixed layers. Thin sensors with 120 µm active thickness will be used within a 70 cm
radius from the beam axis on silicon disks. There are over 400 individual cells with
a size of 0.5 cm2 in the high-density layout of those sensors. At a distance greater
than 70 cm from the beam, the sensor’s active thickness increases to 200-300 µm,
and there are approximately 200 individual cells. Physically thinned Float Zone (FZ)
silicon is used for 200 and 300 µm sensors, while 120 µm sensors are epitaxial with a
thick handle wafer. The HGCAL endcaps will consist of 620 m2 of silicon and 400 m2

of scintillator material, with over 6 million readout channels. In the recent HGCAL
design revision, the total number of layers was reduced to 47 [56] but could also change
till actual production. The described calorimeter design ensures a high longitudinal
and transverse granularity required for the particle flow algorithms. To mitigate the
effects of increased sensor leakage current caused by irradiation, the HGCAL will be
kept at a low temperature of −30◦ C. An overview of the main parameters is given in
Table 2.1.

19

Chapter 2. MATERIALS AND METHODS

Table 2.1. HGCAL active material parameters.

Both endcaps Silicon Scintillators
Area ∼ 620 m2 ∼ 400 m2

Modules ∼ 27000 ∼ 4000

Channel size 0.5−1 cm2 4−30 cm2

Channels ∼ 6M ∼ 240k

Op. temp. −30◦ C −30◦ C

2.1.4.1 The HGCAL Trigger Architecture and Data processing

Although the exact design of the system is still unknown, it is planned that the initial data
processing will be carried out within the on-detector ASICs to minimize the amount of data
that needs to be transmitted off the detector. The second stage of data processing, which is
associated with reconstruction algorithms such as energy clustering and pile-up estimation,
will be executed through off-detector FPGAs.

To efficiently transfer trigger data out of the detector, it is necessary to reduce the data size
by a factor of approximately 20. This reduction is achieved through various techniques and
methods, which ensure that the data is compressed without losing any critical information.
The implementation of such techniques is vital to facilitate the smooth and reliable transfer
of trigger data in a limited bandwidth scenario. The reduction techniques are [57]:

• The timing information is discarded, and both the dynamic range and resolution of
measured energies are reduced.

• An additional reduction is provided by sending only alternate layers in the CE-E.

• The sensor cells are grouped into larger trigger cells (TCs).

• The system selects and sends the most energetic trigger cells off the detector using
a mixture of optical and electrical links, ensuring the accuracy and efficiency of the
process.

The visualization of the last two steps is shown in Figure 2.8
After completing the final step mentioned earlier, the 3D clustering algorithm is per-

formed on a full depth view of the detector [47]. On that way, both longitudinal and trans-
verse shower profiles specific to each physics object are exploited in cluster generation, re-
sulting in a detailed shower "image". With the created 3D clusters, it is possible to classify
them as physically interesting (EM or hadronic) or irrelevant (PU).

The conditions under which the experiment takes place, the exposure to radiation, the
speed of data flow, and the limited computer resources available for the primary data selec-
tion make their processing even more difficult. The distance of the control room from the

20

Chapter 2. MATERIALS AND METHODS

location of the experiment also affects the possibilities of measurement, recording, and data
transfer.

Figure 2.8. Illustration depicting the process of trigger data reduction that occurs in the
front-end ASICs. The sensor cells, shown in (1), are grouped into trigger cells represented
by (2). During the data reduction process, only the most energetic cells, indicated by (3),

are selected and transferred for further processing [57].

The CMS L1 new trigger system is designed to take advantage of the new features pro-
vided by the upgraded sub-detectors in order to maintain a high efficiency of physics event
selection in the incoming HL-LHC phase. The illustrative layout of the architecture and data
flow of the Phase-2 trigger system is shown in Figure 2.9. With a latency of 12.5 µs, not only
information from the calorimeters and muon detectors is utilized, but also the information
from the new tracker and HGCAL can be incorporated. As visible on Figure 2.9, upgraded
L1T receives inputs from the calorimeters, the muon spectrometers, and the track finder. The
calorimeter trigger inputs include data from the barrel calorimeter (BC), the HGCAL, and
the hadron forward calorimeter (HF). It is composed of a barrel calorimeter trigger (BCT)
and a global calorimeter trigger (GCT). The muon trigger receives data from various detec-
tors, including DT, RPC, CSC, and GEM. It comprises a barrel layer-1 processor and muon
track finders that process data from three separate pseudorapidity regions. These are referred
to as BMTF, OMTF, and EMTF for the barrel, overlap, and endcap, respectively. The muon
track finders send their muon candidates to the global muon trigger (GMT) for possible com-
bination with tracking information. The track finder (TF) distributes tracks to various parts
of the design, including the global track trigger (GTT). The correlator trigger (CT) in the
center (yellow area) consists of two layers dedicated to particle-flow reconstruction. All ob-
jects are directed to the global trigger (GT) to make the final L1 trigger decision. External
triggers, such as inputs from the MIP Timing Detector (MTD), flowing into the GT are also
shown. The components being developed within the Phase-2 L1T project are all located in
the same area, which is highlighted in blue. The different stages of processing are shown
on the right: trigger primitives, local and global trigger reconstruction, particle-flow trigger
reconstruction (PF), and global decision.

To ensure the updated CMS meets the conditions and features needed for efficient func-
tioning in the HL-LHC era, the CMS collaboration has been actively testing prototype de-

21

Chapter 2. MATERIALS AND METHODS

tector modules, including HGCAL. These tests have helped to refine the design and func-
tionality of HGCAL, making it one of the most advanced detector modules available today.
To confirm the effectiveness of the planned changes, the detector components and their as-
sociated electronics are extensively tested in test bench-based experiments and beam test
experiments with single particles [58–61]. In particle physics, a test beam is utilized to
calibrate and study particle detectors prior to their deployment in large-scale experiments.
It provides a controlled environment to study the detector’s response to known particles of
specific energies.

Figure 2.9. Schematic overview of the CMS L1 Phase-2 enhanced trigger architecture [47].

2.2 Machine Learning in High Energy Physics

The large-scale experiments, such as those conducted at the LHC, are characterized by vast
amounts of data and intricate event structures. Traditional analytical approaches, which rely
on manual exploration and interpretation of data, are facing challenges in handling the size
and complexities of these datasets. In recent years, ML techniques have revolutionized the
way of data analysis, providing unprecedented abilities to detect complex patterns and extract
valuable insights [62–65]. Advancements in specialized hardware development have also
played a crucial role in improving the efficiency and accuracy of data selection [66, 67]. This
hardware can be effectively integrated with advanced ML algorithms, bringing numerous
benefits, including faster and more accurate data analysis, improved decision-making, and

22

Chapter 2. MATERIALS AND METHODS

enhanced efficiency in data management. In summary, the combination of ML techniques
and specialized hardware has transformed the field of HEP research, enabling researchers to
uncover new insights and make revolutionary discoveries that would have been impossible
using traditional methods [29, 30, 68–70].

2.2.1 Fundamental ML Principles

Artificial intelligence (AI) is an area of study that focuses on developing computers with
human-like cognitive abilities like analyzing data, recognizing images, understanding hu-
man language, making predictions, and much more. ML is a subset of AI based on ex-
tracting knowledge from data and enabling computers to learn from it autonomously or
semi-autonomously. Arthur Samuel wrote about "the field of study that gives computers
the ability to learn without being explicitly programmed" already in 1959 [71].

In contrast to traditional algorithms that are developed based on domain knowledge and
then implemented in software to analyze data, ML algorithms learn directly from data and
often produce the desired results. Utilizing the power of ML, researchers can quickly identify
crucial features and correlations in large datasets, leading to more accurate predictions and
valuable insights. ML techniques involve training algorithms to recognize patterns and make
predictions based on data, making them highly effective for analyzing high volumes of data.
After the completion of model training, it can be used to predict new data.

Depending on the structure of the training dataset, ML techniques can be classified into
two main categories, as shown in Figure 2.10:

1. Supervised Learning: in this technique, labeled data is used. The data set is usually
partitioned into two subsets, namely the training set and the testing set. The model is
trained on the training set, where a unique data chunk is used for each training step to
estimate a model’s predictive power. When the training is finished, the model can be
used to predict the output of new data, as shown in Figure 2.11. This process uses a
testing set and is less computationally intensive. It is called inference, and it provides
insight into how well a model can generalize to new data. Supervised learning can be
separated into two types of problems: classification and regression. Classification is
used to assign labels to data based on patterns learned from training data. In binary
classification, data is categorized into two distinct groups, while in multi-class classifi-
cation, data is sorted into one of several possible classes. On the other hand, regression
is used to predict a continuous output variable based on input features by establishing
a mathematical relationship between dependent and independent variables.

2. Unsupervised Learning: In this technique, there is no label connected with input
data. The model learns to identify patterns and relationships in the data and, based on
learned information, groups similar data points together, as illustrated in Figure 2.11.
This technique can be helpful in discovering hidden patterns and structures in data.

23

Chapter 2. MATERIALS AND METHODS

Figure 2.10. Classification of ML algorithms [72].

Furthermore, Semi-Supervised Learning combines the techniques described earlier. This
training process relies on a small amount of labeled data and a larger amount of unlabeled
data. When there is a shortage of labeled data, employing this approach can enhance the
performance of machine learning models.

Figure 2.11. Comparison of supervised and unsupervised learning [73].

24

Chapter 2. MATERIALS AND METHODS

Overall, ML techniques have found the usage in various industries such as healthcare
[74, 75], finance [76, 77], transportation [78], and many others. In this thesis, a supervised
learning approach is implemented, encompassing both binary and multiclass classification.

2.2.2 Challenges

A potential issue with ML models is overfitting (Figure 2.12), where the model is excessively
complex and accurately fits the training set but struggles to generalize to new data [79]. There
are several reasons why overfitting may occur, like the presence of noise, the limited size of
the training set, and the complexity of classifiers.

Figure 2.12. The relationship between model fitting and model complexity: the fitted model
is depicted as a grey line separating two classes in the data: red circles and green squares.
Overfitted models can fit to noise in the training data, while underfitted models may miss

important details [80].

A range of strategies can be employed to prevent overfitting, including cross-validation,
early stopping, data expansion, and regularization [81]. There are different types of cross-
validation [82–84], and the main concept involves partitioning the dataset into subsets, train-
ing the model on some subsets, and evaluating its performance on the remaining subsets.
The early stopping strategy is introduced to prevent overfitting by stopping training before
performance optimization stops [85]. The data expansion approach aims to increase the size
of the dataset. By expanding the dataset, the model is trained on more diverse data, which
can result in better generalization and robustness. By using this strategy, NN hyperparam-
eters can be fine-tuned more effectively, resulting in an improved model performance. The
regularization strategy aims to limit the effect of useless features on the model. As more fea-
tures are added to the model, its complexity increases as well. However, an overfitted model
tends to incorporate all the features, regardless of their effect on the final output. To prevent
this, it is crucial to reduce model complexity by identifying and excluding low-impact fea-
tures, which will improve its ability to generalize. This allows the model to concentrate on
the most impactful features, resulting in accurate predictions and improved performance. To
prevent overfitting and improve generalization, a penalty term (regularizer) is added to the

25

Chapter 2. MATERIALS AND METHODS

cost function to penalize large coefficients. Some commonly used regularization methods
are:

• L1 Regularization (Lasso)

L1 regularization adds the L1 norm values of the coefficients as a penalty term to
the loss function, which encourages sparsity in the model. This sparsity causes some
coefficients to become exactly zero, effectively selecting a subset of features.

• L2 Regularization (Ridge)

L2 regularization adds the squared values of the coefficients as a penalty term to the
loss function. It penalizes large coefficients but does not lead to sparsity, allowing
all features to be retained. By implementing the technique, it is possible to prevent
multicollinearity and improve model stability.

ML algorithms need a lot of data to train and learn patterns well. Having more data helps
to create a better model that can handle complex problems and perform well on new data.
However, obtaining access to an extensive dataset is not always feasible. To address this,
various methods like data augmentation and creating synthetic data are used. Synthetic data
can be generated through simulations, algorithms like GANs (Generative Adversarial Net-
works), or by augmenting existing datasets. This helps strengthen the training process and
improve the model’s robustness.

2.2.3 Baseline Particle Classification Methods in HEP

As baseline methods to be compared to NN-based approaches proposed in this thesis, the
simple cut-off and two ML methods, Support Vector Machine (SVM) and Random Forest
(RF), are applied. The methods mentioned have typically been used in HEP for different
tasks, including triggering [86–90]. However, when comparing and interpreting the results, it
is important to consider that there are significant differences in technology, spatial resolution,
and data characteristics between the proposed approach for the HGCAL under development
and the existing approach used for triggering algorithms.

Further, this section analyses the simple cut-off approach and the diverse ML tools ap-
plied in the subsequent analyses. It explains some basic ML concepts and algorithms used
in the thesis. ML methods will be adapted to handle HEP data, which requires sophisticated
approaches to distinguish between signal and background events and identify rare processes.

2.2.3.1 Cut-off

In the feature space, linear classification is the simplest form of classification where the
borders are represented by straight lines. This is a commonly used selection method in HEP
named a cut-based analysis [91–93], which has the advantage of being easy to interpret. In

26

Chapter 2. MATERIALS AND METHODS

the process of selecting events, it is necessary to identify the physical quantities that are most
distinguishing and apply cuts on those variables or their combinations. The selection process
involves a series of cuts, which can be represented in tables or plots called "Cut-Flows" [93].

The primary advantage of this method is its simplicity in implementation and under-
standing, which makes it efficient for quickly filtering data in real-time analyses. However,
in situations where the characteristics of the signal and background are similar, its inflexibil-
ity leads to low discrimination accuracy.

2.2.3.2 Support Vector Machine

Support Vector Machine (SVM) is a supervised ML algorithm used for solving complex
classification and regression problems invented by Cortes and Vapnik in 1995 [94]. The aim
of the SVM algorithm is to find a hyperplane in an N-dimensional space (where N represents
the number of features) that effectively classifies the given data points. Two classes of data
points could be separated with multiple hyperplanes, but the objective is to find a hyperplane
that has the longest distance between the data points of both classes. That distance is named
margin, and by maximizing it, the classifier can better generalize the future data. Support
vectors are data points critical for the construction of the hyperplane. Those are the points
from each class that are the closest to the hyperplane, and by using these support vectors, the
margin is maximized, which increases the accuracy of the classifier. The illustration of the
SVM algorithm is given in Figure 2.13.

Figure 2.13. Illustration of SVM algorithm: optimal hyperplane (WX +b = 0) that
effectively separates different data classes [95]. The largest margin 2

∥W∥ can be obtained by
maximizing the distance between the hyperplane and its closest point.

There are two types of SVM algorithms:

27

Chapter 2. MATERIALS AND METHODS

• linear SVM, suitable when the classes can be separated by a hyperplane. It assumes
that the relationship between the features and the output classes is linear.

• non-linear SVM, also known as kernel SVM, allows it to find non-linear decision
boundaries. It is appropriate to use when the relationship between the input fea-
tures and the output classes is non-linear, as it can capture more complex relationships
present in the data.

The choice between linear and non-linear SVM depends on the characteristics of the data
and the problem we are dealing with. Although a nonlinear kernel often has better predictive
performance, in some cases, a linear kernel needs consideration, as solving the optimization
problem for a linear kernel is much faster. According to [96], using the linear kernel is
sufficient if the number of features is large, as the nonlinear mapping does not provide any
improvement in the performance.

In the experiment, an open-source ML library for the Python programming language
named scikit-learn [97] is used for testing SVM classifiers. The first group of tests will
be conducted using default settings for each of the kernel values: linear, poly (degree=3),
sigmoid, and rbf with default settings. Subsequently, to improve model performance, the
GridSearch will be used to find the optimal hyperparameters within the model. The param-
eters that will be used for model optimization are:

• C: a regularization parameter with a default value of 1, controlling the trade-off be-
tween maximizing the margin and minimizing the classification error. The magnitude
of the regularization is inversely related to the value of C: a smaller C value results in a
wider margin, which leads to lower accuracy. When using a larger C value, the margin
is more constrained, leading to a classification of more training examples correctly.
However, this may potentially result in overfitting.

• gamma: a kernel coefficient for ‘rbf ’, ‘poly’, and ‘sigmoid’ with a default value ’scale’
calculated as 1

n_ f eatures∗X .var() . The high value of gamma values results in more com-
plex decision boundaries but may lead to overfitting.

• kernel: specifies the kernel type to be used in the algorithm.

SVM has become a widely adopted method for various applications due to its high ac-
curacy and low computational requirements. In the HEP field, authors in [87] use SVM
in search for the case of Supersymmetry at the LHC. In [88], it is used for analysis of top
quark production. Already in 1999 in [98] authors used SVM and MLP for charm quark
tagging and muon identification and got consistent results. SVM algorithm used to reduce
the multi-jet background events in [99] achieved classification accuracy ≥ 95%. The appli-
cation of SVM to the search for a classification of heavy quark jets is presented in [100],
while Vossen’s work in [101] provides insights into using SVM in HEP.

28

Chapter 2. MATERIALS AND METHODS

2.2.3.3 Random Forrest

Random Forest (RF) is a popular supervised ML algorithm introduced by Leo Breiman
[102]. Based on the concept of ensemble learning1, RF combines the outputs of multiple
decision trees to generate a single result. The ensemble technique used in RF is Bagging
(also known as Bootstrap Aggregation): decision trees are trained on various subsets of the
given dataset. The final output is generated using prediction from each tree and based on the
majority votes of predictions. The illustration of the RF algorithm is given in Figure 2.14 In

Figure 2.14. Illustration of RF algorithm: a number of decision trees are created. A final
result is created by aggregating the predictions of all the trees [103].

the RF learning process, there are two major sources of randomness that reduce overfitting
and improve the performance and robustness of the model. The first random component is the
use of a random (bootstrapped) sample of the original training data set for each individual de-
cision tree. It means, in the vast majority of cases, the training sets for the trees are different
from one another, reducing the correlation between trees and improving the generalization
of the predictions. Another element of randomness is in a (random) selection of the features
considered at each node. Many good properties contribute to its widespread usage [104]: it
is relatively fast to train and predict, simple to tune, can handle high-dimensional problems
directly, and can be easily implemented in parallel. Aside from that, RF is a multipurpose
tool; it can handle classification and regression problems, including multiclass classification.
It is considered one of the most efficient algorithms, requiring almost no tuning and still
providing fine control over the model that is learned.

ML library scikit-learn [97] is used for testing RF classifiers. It offers a robust implemen-
tation combining both algorithmic and code optimizations. Tunable parameters are available

1The good performance of the model is achieved by combining multiple classifiers to solve a complex
problem and to improve the performance of the model.

29

Chapter 2. MATERIALS AND METHODS

to improve the accuracy of the RF classifier in specific situations. The hyperparameter opti-
mization is done using the grid search, employing the next hyperparameter search space:

• n-estimators: the number of trees in the forest, with default value 100. Increasing this
hyperparameter generally improves the performance of the model but also increases
the computational cost of training and predicting.

• max_features: maximum number of features RF considers looking for the best split,
the default value is ’sqrt’ (of number of features).

• max_depth: maximum number of levels in each decision tree. The default value is
None, which means that nodes are expanded until all leaves are pure or until all leaves
contain less than 2 samples.

• criterion: this parameter measures the quality of the split, with default value ’gini’.

Understanding the contribution of each feature to the (RF) predictions is typically important.
By analyzing the contribution of each feature, it is possible to identify the most significant
ones and eventually optimize the RF model to achieve more accurate predictions. Scikit-

learn has a built-in method for feature importance in RF. This method can extract the most
important features that contribute to the model’s accuracy. Permutation feature importance
is another useful scikit-learn method that estimates the importance of each feature by mea-
suring the model’s performance change when the feature’s values are randomly shuffled. In
the experiment, this is not applicable, as features are pixels corresponding to energy deposits
in the particular HGCAL layer. Boruta [105] is an extension of the RF algorithm that itera-
tively removes the features that are proved by a statistical test to be less relevant than random
probes.

RF has broad applications in HEP: in [89], it is used for particle identification in the
ALICE experiment, [106] describes RF-based multiclass classification for highly skewed
particle data,in [90] it is used for Higgs boson discovery. In [107], authors use an adap-
tation of RF algorithm to solve the problem of pulsar candidates detection. The model’s
performance is optimized by increasing the number of trees, resulting in an AUC of 0.9999.

2.2.4 Neural Networks

Artificial neural networks (ANNs) or, shortly, neural networks (NNs) are specific ML al-
gorithms inspired by the complex workings of the human brain. Just like the human brain
consists of interconnected neurons, ANNs consist of interconnected nodes that process and
transmit information. These algorithms have the ability to learn from data, recognize com-
plex patterns, and make decisions. By mimicking the brain’s structure and functionality,
ANNs have significantly contributed to the advancement of AI, enabling the development of
systems that can perform tasks such as pattern recognition, prediction, and decision-making.

30

Chapter 2. MATERIALS AND METHODS

2.2.4.1 History and Evolution of Neural Networks

The possibility of learning from experience and the high data processing speed of the human
brain were the main motivations for achieving human-like artificial intelligence. According
to [108], historians and scientists alike often give credit to neuropsychiatrist Warren McCul-
loch and mathematician Walter Pitts for the first effort to mimic the workings of the human
brain using computers in the 1940s. As a part of the research on the neurophysical charac-
teristics of living beings, they developed a model called the Threshold Logic Unit (TLU).
The TLU model "imitates" a biological neuron in the following way: the input signals are
numerical values, the strength of the synapse is expressed by the weight factor w, which is
multiplied by the signals and summed up in the cell body; if the obtained amount is above
the defined threshold, the neuron gives an output signal. Inspired by the work of his prede-
cessors, in [109, 110], Rosenblatt presented the classic perceptron model ten years later –
the simplest form of an artificial neuron. It was later continued to be developed by Minsky
and Papert, and their model was accepted under the name perceptron [111]. Hence, the term
perceptron, notional as a mathematical model of a biological neuron, refers to a type of NN
developed in the early days of AI. The main drawback of the perceptron is its inability to
learn functions that are not linearly separable.

The perceptron, together with the artificial neuron, is a fundamental concept that plays
a crucial role in the field of artificial neural networks. The perceptron processes the input
signal using a linear model and produces an output signal, often used in binary classification.
On the other hand, an artificial neuron uses some activation function before it produces an
output, as shown in Figure 2.15. While the terms "perceptron" and "neuron" are sometimes
used interchangeably, it is evident that "neuron" is a more general and complex term.

Figure 2.15. Visualization of the artificial neuron: it consists of input layer, one hidden
layer, and output layer [112].

The described structure (after a process named training) is capable of solving simple
classification problems, like binary classification. The parametric formula of an artificial

31

Chapter 2. MATERIALS AND METHODS

neuron is

y = ϕ(
n

∑
i=1

xiwi +b), (2.4)

where x is the input vector, w is the weight vector, b is the bias, and ϕ is the non-linear
function. Weights and bias are parameters of the model that are learned during the training
process. The hyperplane defined by the weights ∑

n
i=1 xiwi + b = 0 creates two sub-spaces:

input vectors laying on the same side of the hyperplane have the same sign. Using a specific
activation function, such as sigmoid, the positive and negative values are transformed to 1
or 0, which represents the solution to the classification problem. As shown in [113], some
functions, such as XOR, cannot be treated by single-layer perception. However, when the
problem becomes complicated, neurons can be organized into multiple layers to form more
complex neural network structures like MLP, CNN, recurrent neural networks (RNN), and
many others.

2.2.4.2 Multi Layer Perceptron (MLP)

An MLP is (for historical reasons) another name for a feedforward artificial neural network.
It is the most basic NN model consisting of fully connected neurons with a nonlinear ac-
tivation function. According to Hornik [114], MLP is a universal function approximation;
respectively, MLP has the ability (theoretically) to approximate any continuous function to
an arbitrary level of accuracy using a sufficiently large number of parameters.

As shown in Figure 2.16, MLP consists of at least three main layers: an input layer,
one or more hidden layers, and an output layer. The number of nodes in the input layer is
determined by the complexity of the data that needs to be processed. Further, the number of
output nodes depends on the number of classes the neural network should predict. The most
challenging aspect of modeling a NN is determining the number and the structure of hidden
layers, which depends on the complexity of the data and the problem to be solved, and is
often target of optimization. In the case that MLP has two or more hidden layers, it is called a
deep neural network. Each hidden layer consists of multiple neurons that receive inputs from
the previous layer. Those inputs are weighted and summed together. The activation function
is applied to the calculated weighted sum to enable NN to model nonlinear relationships
between the inputs and outputs.

The process of training an NN involves a learning algorithm that iteratively adjusts the
values of weights and biases. Before training an NN, the weights and biases are (randomly)
initialized. In the forward propagation process, the input data is fed forward through the
network to generate a prediction. The cost function, the difference between the calculated
prediction and the ground truth from the training data, gives the error that the model made
in its prediction. In backpropagation, to improve the model accuracy, the cost function is
minimized using an optimization algorithm known as gradient descent. Gradually, in several
steps, the network refines weights/biases values and improves performance.

32

Chapter 2. MATERIALS AND METHODS

Figure 2.16. Illustration of the basic architecture of MLP: it consists of an input layer, one
or more hidden layers, and an output layer [115].

Choosing the appropriate activation function is essential for ensuring effective training
and performance of NNs. Several non-linear activation functions are commonly used (Fig-
ure 2.17):

• sigmoid: it is one of the most widely used activation functions. Sigmoid maps any
input value to a range between 0 and 1, making it useful for binary classification tasks.
For very large or very small input values, the gradient becomes very small, which can
slow down or even stop the training process. This problem is known as the Vanishing
Gradient Problem.

• tanh: it maps inputs between -1 and 1 and often performs better than sigmoid for
hidden layers due to its zero-centered output and stronger gradient. The main disad-
vantage of the function is that it can also suffer from the vanishing gradient problem
for very large input values.

• Rectified Linear Unit (ReLU): it is the most widely used because it is computation-
ally cheaper than alternatives and effectively solves the vanishing gradient problem
during training.

2.2.4.3 Convolutional Neural Network (CNN)

In 1989, LeCun in [116] described LeNet-5, the CNN model used for the task of handwritten
digit recognition. At that time, NNs were mostly applied in the scientific context, and their
effectiveness in solving real-life problems was demonstrated through this work. More than

33

Chapter 2. MATERIALS AND METHODS

(a) Sigmoid (b) Tanh (c) ReLU

Figure 2.17. Activation functions.

a decade later, in 2012, in a [117], the authors showcased the incredible capabilities of deep
CNNs in accurately classifying large-scale image datasets. Today, the paper is considered
one of the breakthrough scientific papers in the ML field. Their findings revolutionized im-
age classification and set a new standard for state-of-the-art techniques in this field. In the
following years, various CNN architectures were introduced, using different design princi-
ples and optimization techniques that have transformed the field of CV,

Today, convolutional neural networks are widely used in computer vision problems such
as image classification, object detection, and image segmentation. CNNs usually consist of
one or more convolutional layers, followed by a pooling layer, while the network ends with
one or more fully connected layers, as visible in Figure 2.18. Convolutional layers contain
small matrices named filters/kernels that slide over the input image and perform convolution
to learn features from input images. Each filter is designed to identify specific patterns or
features, like edges, textures, or more complex structures. Pooling layers downsample the
spatial dimensions of the input feature maps. It reduces computational costs in subsequent
layers and makes detecting features computationally efficient. Another advantage is it helps
avoid overfitting by reducing the number of parameters in the model. The two most used
types of pooling layers are max pooling, which selects the maximum value in each region,
and average pooling, which computes the average value. Classification is done in the fully
connected layer at the end of the network.

In addition to the difference in the way data is processed, MLP and CNN require dis-
tinct types of input data due to differences in data processing. MLP necessitates flattened
input data, where input features are structured as a one-dimensional vector. Furthermore,
MLP inputs often require the manual creation of features, which can be a time-consuming
task. In contrast, CNN is specifically designed to handle two-dimensional input data, such
as images, without the need for flattening. CNN utilizes convolutional layers to maintain
spatial relationships in the input data, making them particularly effective for tasks like image
recognition and computer vision.

34

Chapter 2. MATERIALS AND METHODS

Figure 2.18. Illustration of the basic architecture of CNN: it consists of two convolutional
layers, each followed by a pooling layer. Classification is performed in the fully connected

layer on the end of the CNN [118].

2.2.4.4 Evaluation

Several metrics are commonly used in NN evaluation. They provide a comprehensive under-
standing of classifier performance and can help identify areas for potential enhancements.
Although accuracy is the most commonly used measure, considering and understanding
some other frequently used evaluation metrics is crucial for effective evaluation. Additional
evaluation metrics usually used to illustrate the performance of the model are:

• accuracy (ACC), percentage of correct classifications, determined as

ACC =
T P+T N

T P+T N +FP+FN
(2.5)

• sensitivity, recall, or true positive rate (TPR)

T PR =
T P

T P+FN
(2.6)

• specificity, or true negative rate (TNR)

T NR =
T N

T N +FP
(2.7)

• false negative rate (FNR)

FNR =
FN

FN +T P
= 1−T PR (2.8)

• false positive rate (FPR)

FPR =
FP

FP+T N
= 1−T NR (2.9)

35

Chapter 2. MATERIALS AND METHODS

• F1 score
F1 = 2

PPV ∗T PR
PPV +T PR

. (2.10)

where T P stands for the number of correctly predicted positive classes, T N is the number
of correctly predicted negative classes, FP is the number of samples incorrectly predicted as
positive classes, and finally, FN is the number of samples incorrectly predicted as negative
classes. In some scenarios, like in the case of class imbalance, accuracy is not a good metric.
Instead, in that situation, it is recommended to use the F1 score, which is defined as the
harmonic mean of precision (PPV, where PPV = T P

T P+FP) and recall, designed to work well
on imbalanced data.

Another standard technique for summarizing the classifier performance (for a balanced
dataset) is to produce a receiver operating characteristic curve (ROC), created by varying
the threshold values used to classify instances as positive or negative. For each threshold
value, the TPR and FPR are calculated, resulting in a point on the curve. The model’s
performance is better if the ROC curve is closer to the top-left corner. By calculating the
corresponding AUC, another evaluation metric is obtained; a larger area under the ROC
curve (AUC) signifies a better classifier. In the HEP, it is common to interpret the ROC curve
in terms of signal efficiency (TPR) vs. background rejection (TNR). Also, physicists are
sometimes interested in other metrics, like signal efficiency at some fixed level of background
rejection. When dealing with imbalanced dataset scenarios, using a precision-recall curve
instead of an ROC curve is more appropriate. The former curve summarizes the trade-off
between the true-positive rate and the positive predictive value for a predictive model using
different probability thresholds.

Evaluation metrics are often used in conjunction to provide a more comprehensive under-
standing of a model’s performance. For particle detector triggers, it is essential to detect as
many interesting events as possible, meaning the trigger algorithm should operate at a very
low FNR. On the other hand, low FPR ensures staying within bandwidth limitations without
compromising the analysis’s ability to achieve successful results.

In addition to the model accuracy calculated by using equation 2.5, it is common to ex-
tend a binary metric in a way that it fits to a multiclass or multilabel problems by treating the
data as a collection of binary problems. By using this approach, two additional types of ac-
curacies, "macro" and "weighted," are introduced. "Macro" accuracy is a way of calculating
the mean of the binary metrics, where each class is given equal weight. It is calculated by
using the formula

Macro F1 Score =
∑

n
n=1 F1 Scorei

n
. (2.11)

While macro-averaging can be useful to highlight the performance of rare classes, it assumes
that all classes are equally important, which is often not the case. Therefore, macro-averaging
can sometimes overemphasize the poor performance of infrequent classes. "Weighted" ac-
curacy considers class imbalance by computing the average of binary metrics. Each class’s

36

Chapter 2. MATERIALS AND METHODS

score is weighted by its presence in the true data sample. Therefore, it is calculated by:

Weighted F1 Score =
n

∑
n=1

wi ·F1 Scorei (2.12)

where
wi =

Num. o f samples in class i
Total number o f samples

.

2.2.4.5 Classification Threshold Adjustment

In some scenarios, the default threshold (0.5) may lead to poor performance. It is the case
when the predicted probabilities are not calibrated, which is a known problem for modern
neural networks [119]. Adjusting the threshold could result in a more accurate outcome.
Classification threshold adjustment method [120] is a method used in binary classification
that involves changing the threshold at which predictions are assigned to different classes.
Although the classification threshold adjustment was originally intended to be used in the
context of imbalanced datasets, it can also be convenient in other scenarios. One of them
is the cost-sensitive classification problem, where the cost of one type of misclassification
is more important. Binary classification often requires optimizing specific metrics, such as
minimizing FNR or FPR (or maximizing TNR or TPR) based on the application. As per
the findings in [121], the cost of misclassifying an actual positive example into a negative
one is usually more expensive than that of misclassifying an actual negative example into a
positive. This observation is also relevant when it comes to the EM shower selection problem
that is considered in the thesis. In other words, it is more crucial to avoid misclassifying an
EM shower as background than it is to avoid misclassifying a PU/QCD as an EM shower.
The first misclassification may lead to the loss of valuable information while the second case
results in a useless piece of data in storage.

Therefore, when interpreting the predictions of a model, depending on the target opti-
mization, there is a need to change the default decision threshold of 0.5. If TPR and TNR
have the same importance, one way of calculating the cut-off is using Youden’s J statistic
([122]), defined as follows:

J = Sensitivity+Speci f icity−1, (2.13)

or simplified:

J = T PR−FPR. (2.14)

Youden’s index is often used in combination with ROC curve analysis. The index is
calculated for all points of an ROC curve, and the optimal threshold with the largest J value
is chosen. If both metrics, FNR and FPR, are not equally important, using the trial and error

37

Chapter 2. MATERIALS AND METHODS

method helps find the threshold to lower the targeted metric (which is FNR in the considered
classification problem).

2.2.5 Neural Network Applications in HEP

NNs are crucial tools in HEP, used for data analysis, pattern recognition, and optimizing
complex experimental processes. NNs can distinguish between different types of particles
produced in high-energy collisions, such as electrons, muons, and hadrons, providing high-
purity samples of a given type. They classify particles based on their energy deposits and
trajectory information in particle detectors. In the traditional approach, particle selection is
achieved by applying "cuts" to the handcrafted features obtained from the detector response
to reject the particles not meeting the specified criterion. When the difference between var-
ious types of particles is significant, this approach is justifiable. But when the feature dis-
tributions among different particle species overlap, it can lead to unwanted outcomes. By
considering multiple features and correlations between them, NNs significantly outperform
simple cutoffs in discriminating between particle types [92]. The decision boundaries for
particle identification are based on data and can adjust to changing conditions, resulting in
improved performance. Another NN advantage is the ability to handle multiclass classifica-
tion problems, allowing the identification of multiple particle types simultaneously, which is
valuable in experiments with a diverse range of particles. Probabilistic outputs for particle
types provided by NNs enable precise decision-making and accurate uncertainty estimation,
particularly in non-binary identifications.

Today, various types of NNs are successfully used in numerous HEP applications. Below
is an overview of the main areas where NNs are used, with a focus on the application of NNs
in triggering:

• Particle Identification and Classification, Event Reconstruction

Already in 1995, the NN approach was suggested for electron identification in the
ZEUS uranium calorimeter [123]. In the [16], authors report results of image-based
event classifiers Residual Net-type, using simulated, low-level detector data as inputs.
In the ATLAS experiment, authors in [124] describe the usage of CNN for electron
identification. NN’s input are the images of the deposited energy in the calorimeter
cells. NN also uses additional input features, the high-level variables that are used
by the likelihood (LLH), and other NN algorithms developed in ATLAS. Additional
features include information on up to five inner detector tracks that are matched to an
electron candidate during reconstruction. As a result, NN gives the probability that a
reconstructed electron belongs to six classes of signals and backgrounds.

The process of interpreting electronic signals in the detector to determine the origi-
nal particle characteristics and particle type is known as event reconstruction, which

38

Chapter 2. MATERIALS AND METHODS

is closely linked to particle identification in HEP experiments. Utilizing advanced al-
gorithms, which frequently incorporate ML techniques, can optimize and enhance the
accuracy of the reconstruction process.

• Event Simulation

Event simulations play a vital role in predicting the outcomes of particle collisions
at the LHC. Additionally, due to planned high luminosity in upcoming colliders, the
standard Monte Carlo simulation approach is becoming computationally challenging.
The use of NNs can significantly enhance the efficiency and accuracy of these simu-
lations. Rather than relying solely on traditional models, NNs can learn patterns and
correlations from existing data to generate more realistic simulated events. A number
of authors have proposed the use of NNs to simulate events [21, 22, 125, 126].

• Anomaly Detection

Anomaly detection involves identifying data points, entities, or events that fall outside
the normal range, deviating from what is standard or expected. In HEP experiments,
it is a powerful tool that serves two main purposes: discovering new physics and en-
suring the accuracy and reliability of experimental data. Anomalies can indicate the
presence of new particles or phenomena not anticipated by existing theories. Also, us-
ing anomaly detection techniques, researchers can distinguish rare events or processes
that might happen at a very low frequency from the background noise. Anomalies can
reveal discrepancies between observed data and theoretical models or detector behav-
ior, leading to improved modeling and calibration, ultimately enhancing simulation
and analysis accuracy. Therefore, identifying anomalies is a key step in discovering
new physics beyond the Standard Model. In HEP, various NN approaches [127–131]
have been extensively studied for the problem of anomaly detection.

• Data Compression and Reduction

Trigger algorithms select potentially interesting collision events and store them for
further analysis. Using that approach, the full records of a small subset of the data
are saved. Newer strategies suggest storing partial information about a larger fraction
of events that would eventually lead to the discovery of the existence of a new kind
of particle or interaction. NNs can reduce data dimensionality while preserving rel-
evant information, which is helpful in managing the vast amounts of data produced
in high-energy physics experiments. For example, in [132], authors suggest automat-
ical compression of the full experimental information by using the Variational Au-
toencoder. An ASIC implementation of a low-power, low-latency data compression
algorithm based on a convolutional neural network is presented in [133]. More NN-
based approaches for data compression can be find in [134–137] With the development
of libraries and tools that facilitate the implementation of NN models in FPGA, their

39

Chapter 2. MATERIALS AND METHODS

usage has become possible in restricted environments where low latency is required.
In [138], authors suggest the implementation of high-performance, sub-microsecond
NNs on FPGAs for ATLAS trigger application. Authors in [30] present a case study
for applying NNs in jet classification. The proposed NN is implemented in FPGA us-
ing hls4ml and, with a latency of 75–150 ns, fits well into the CMS and ATLAS trigger
constraints. Real-time jet identification using two types of recurrent neural networks,
long short-term memory (LSTM) and gated recurrent unit (GRU), using the same way
of FPGA implementation is given in [70]. CNN-based fast muon tracking used for
muon trigger is presented in [68], and FPGA-based NN regression model for applica-
tions in the future hardware muon trigger system of the ATLAS is given in [69]. CNN
is also proposed for track seed filtering in CMS high-level trigger [18]. An example
of the recurrent neural network allowing the reconstruction of the energy deposited in
the calorimeter and implemented in FPGA is shown in [139] and [140], while authors
in [140] also present the CNN model for energy reconstruction. FPGA implementa-
tion of another NN architecture, GNN, used for charged particle tracking, is shown in
[141] and [34]. A proposal for CNN usage for a real-time data acquisition and trigger
system in another HEP project, the Deep Underground Neutrino Experiment (DUNE)
particle detector, is given by authors in [35]. An upgrade to the L1T system in the Su-
per Cryogenic Dark Matter Search (SuperCDMS) SNOLAB experiment is proposed
in [142]: an LSTM neural network implemented on the trigger FPGA is expected to
lower the trigger threshold by 22%. Authors in [143] propose a fast neural network
package named ANN4FLES (containing MLP and CNN) for real-time data analysis
in heavy-ion physics experiment Compressed Baryonic Matter (CBM).

It is crucial to understand that the ML models highlighted in the review are designed to
make predictions for distinct applications utilizing distinct datasets and feature types.
As a result, comparing the accuracy or efficiency of one model to another is not a
simple task. Each model is fine-tuned to operate on a specific set of features, and
therefore, evaluating their performance must be based on identical criteria. Overlook-
ing to do so may result in misleading conclusions that do not accurately reflect the
models’ capabilities.

NNs have shown their immense value in the field of HEP research. These networks
can efficiently process large amounts of data, identify intricate patterns, and refine
analytical techniques. As a result, they have contributed significantly to a better under-
standing of the fundamental particles and forces. With the increasing amount of data
generated by experiments, NNs have become an essential tool in their analysis, lead-
ing to the discovery of new and exciting physics beyond the limitations of the Standard
Model. Also, NNs are extremely powerful when applied to low-level inputs as they
get access to full information about every event. At the same time, there are other ben-

40

Chapter 2. MATERIALS AND METHODS

efits from skipping the need for human preprocessing: data processing is faster, and
potential biases from feature engineering are avoided.

Dealing with PU presents a significant technical challenge in the HEP experiments. This
challenge is even more pronounced when luminosity increases in the incoming HL-LHC era
when a PU of 140 or 200 is expected (on average, 140 to 200 additional proton-proton col-
lisions occur simultaneously with the primary collision of interest). Scientists and engineers
use advanced algorithms to extract meaningful information from collisions and reduce the
effects of PU. For example, for the PF algorithms used to reconstruct and identify each par-
ticle in an event by combining the information from all the subdetectors, multiple techniques
are developed to mitigate the impact of PU collisions effectively [144]. However, the pres-
ence of PU significantly complicates and hinders the process of particle identification when
relying on ML techniques based on raw data.

2.3 Dataset

To conduct experiments within the thesis research, it is necessary to obtain images that pro-
vide a precise representation of particles’ passage through the HGCAL. Updates to the CMS
detector are ongoing, and the final HGCAL architecture has yet to be determined. As a result,
real test data is not available. For the purposes of this thesis, simulated data is created using
a standard tool designed for the generation of particle events needed for physics analysis.

2.3.1 Event Generation Process

Simulated data plays a crucial role in developing and enhancing detectors for various ap-
plications. In the initial stages of detector development, when real data is not available,
simulated data is used to design and optimize the detector’s geometry, material composition,
and readout electronics. Simulated data offers several benefits over real data as it can be
generated under controlled conditions, which may be difficult or impossible to achieve with
real data. On the other hand, simulated data often relies on simplified models that may not
fully capture the complexities of real-world data, leading to models that perform well on
simulated data but poorly on real data.

To replicate the detector’s behavior as accurately as possible, the simulation process in-
volves the following steps [145]:

• Collision generator: This step simulates the creation of particles during a collision.

• Geometry: This step involves providing an exact description of all the detector’s active
(as sensors) and inactive (cooling, cables) elements.

• Transport software: This step simulates the interaction of particles with detector
material, taking into account their behavior and characteristics.

41

Chapter 2. MATERIALS AND METHODS

Scientists involved in the CMS project for simulation and data analysis use CMS Soft-
ware Components (CMSSW) [146], a software project that is open-source and represents a
significant collaborative effort within the CMS collaboration and the broader HEP commu-
nity. The software is designed to be flexible and modular, which makes it easy for physicists
to customize and extend it for specific analyses. This modular design also allows the soft-
ware to be readily adapted and updated as new technologies and techniques become avail-
able. CMSSW plays a crucial role in simulating CMS detector event data, which is essential
for scientists to perform various types of analyses. CMSSW generates Monte Carlo (MC)
simulation events, which are events that are simulated using statistical methods rather than
being observed in nature.

The primary physics processes that are produced by programs such as Pythia [147] are
used to generate these events. The software uses Geant4 [148], a tool that simulates particle
interactions with the detector material to create a detailed simulation of the CMS detec-
tor. Geant4 is able to simulate particle interactions with great precision and can, therefore,
provide a realistic simulation of the detector. The research dataset was created using data ob-
tained from CMSSW version 12.1.0. Although newer CMSSW versions are now available,
the one being utilized is the version accessible when the thesis experiment started.

2.3.2 Event Simulation

The chosen data to represent a signal is based on an EM shower, a cascade of particles created
by an electromagnetic interaction. This shower is commonly used in experiments measuring
high-energy particles, where the particles interact with the detector material and produce
secondary particles that create the shower. The data collected from this shower provides
valuable insights into the properties of the particles and their interactions.

The EM showers used in the experiment are obtained by simulating electrons with the
transverse momentum (pT) between 2 and 200 GeV, where pT is a component of momentum
perpendicular to the beam line. A minimum bias simulation is used to create the background
samples. Another type of background, quantum chromodynamics (QCD) jets, is also con-
sidered. QCD jets background is generated by simulating the QCD sample with pT from 50
to 80 GeV. For the multiclass classification, another type of background will be added, pi-
ons, subatomic particles belonging to the family of mesons. In the experiment, just charged
pions will be considered. Pions are generated by simulating a Single Pion sample with the
pT between 0 and 200 GeV. All four simulated sets are obtained using a PU value of 200,
adding a comparable level of additional proton-proton interactions occurring along with the
primary interaction of interest.

EM showers are important processes to consider as they are produced by electrons and
photons. Besides, interesting heavy particles like the Higgs boson can decay and produce
electrons or photons. It is crucial to differentiate these particles from the PU, QCD jets, or

42

Chapter 2. MATERIALS AND METHODS

pions that are more often generated.

2.3.3 Event Selection

Identifying nearby clusters of the generated electrons and positrons in an electromagnetic
shower is crucial. Specifically, three-dimensional (3D) clusters within a ∆R < 0.2 of the
generated electrons and positrons are considered potential candidates for further analysis.

If multiple 3D clusters are located in close proximity to the generated particle, a selection
process is initiated. The requirement for the cluster’s pT is that it has to be higher than 10
GeV. Specifically, only those clusters whose pT falls between 80% and 120% of the pT of
the generated particle are considered. This subset selects the 3D cluster with the highest pT

value. This criterion ensures that the clusters are likely to be associated with the EM shower
and are not due to other sources of background noise. To select the PU, 3D clusters with pT

greater than 5 GeV are identified. Only clusters that are not in close proximity to generated
photons, electrons, and positrons are chosen. A minimum distance of 0.2 in ∆R is maintained
between the chosen clusters and the aforementioned particles. To identify QCD jets, 3D
clusters close (∆R < 0.4) to genjets with pT > 30 GeV are selected. Genjets are jets derived
from generator-level Monte Carlo particles, and they contain information about fractions
from different types of generated particles (charged hadrons). The selection of charged pions
is similar to electron selection: 3D clusters within a ∆R < 0.2 of the generated charged pions
are considered. Further, if there are more 3D clusters close to the generated particle, the
clusters whose pT is between 80% and 120% of the belonging generated particle’s pT are
selected. Finally, the cluster with the highest pT value is chosen.

Using the above description, 106 000 samples are generated: 31 000 for each of EM,
PU, and QCD jets samples and 13 000 pion samples. Figure 2.19 shows how the samples
are distributed across different classes used in the classification process. Each bar in the
graph corresponds to a specific class, and its height indicates how many samples belong to
that class. Although it was planned to have an equal number of all simulated particles, a
larger set of simulated pions that match the detector structure used to generate the remaining
samples is not available in the repository. In this study, only low-level features are used:
pT , position (x,y,z), layer number, pseudorapidity (η), azimuthal angle (φ), and particle ID

given by the generator.

2.3.4 Image Formation

Cogan’s [14] study demonstrated a novel and revolutionary approach to analyzing calorime-
ter cells by treating the energy deposited in them as pixels of an image. Inspired by computer
vision methods, this approach considers the particles detected by the physics detector as im-
ages captured on a detector playing the role of a digital camera. In more detail, the authors
define jet-images using calorimeter towers as the elements of the image needed for jet tag-

43

Chapter 2. MATERIALS AND METHODS

Figure 2.19. The distribution of sample numbers according to class.

ging and classification. All previous approaches required additional preprocessing to extract
physical features from the data. In contrast, this new image-based proposal does not require
such preprocessing. The calorimeter cells are already treated as pixels of an image, allowing
the application of advanced image-processing techniques, which can lead to more accurate
and efficient analysis of the data. Therefore, in a very short time, numerous studies have been
carried out using the same methodology [149–151]. In [152], authors give an overview of
computer vision-based approaches to the analysis of LHC events. Treating the data collected
by the detector as images has become the standard in calorimeter data processing [153, 154]
and the same approach will be used in this thesis.

Particles or decay products passing through the calorimeter layers deposit energy in sen-
sor cells grouped into TC. In the CMSSW version ued in thesis (v12.1.0), improved cluster-
ing algorithms are used, enabling direct 3D clustering. The generated 3D cluster provides
complete 3D information about the shower, as seen in Figure 2.20. When creating an image,
if the size of the targeted image is smaller than the range of an individual 2D cluster, then
not all TCs will participate in generating the image. This means that some TCs will be left
out, resulting in an incomplete image. To demonstrate this, Figure 2.20 shows all the TCs in
a cluster, with a black border around the cells that are involved in generating the image and
a red border around the cells that are not. To satisfy L1T constraints, it is important to use
the smallest possible cluster while ensuring that the classification is done efficiently. By re-
ducing the size of the cluster, the L1T system can process the data faster, which in turn helps
to reduce the overall processing time and improve the accuracy of the results. Therefore, the
goal is to find a balance between the size of the cluster and its classification efficiency.

After obtaining 3D cluster data through CMSSW, virtual images are generated through
a series of precise steps. First, a line is drawn between the center of mass of the 3D cluster
and the center of the detector. This line represents the deposition axis. Next, the intersection
point of the axis with each individual layer is identified as the center of the ROI on that
layer. Figure 2.21a is a visual representation of the projection of deposited particle energies

44

Chapter 2. MATERIALS AND METHODS

Figure 2.20. Example of 3D EM cluster where dot size and color are proportional to
deposited pT . TCs participating in 5x5x36 image generation are bordered black, and those

not involved in image generation have red borders.

around the intersection point in one detector layer. The next step involves calculating the
range along the coordinate axes based on the center and also taking into account the target
size of the ROI. To summarize all the energies, a 2D histogram of 5×5 bins is applied (the
target size in this thesis), with a bin size of 2×2cm2 that is adjusted according to the size of
the trigger cell. The step is shown in Figure 2.21b.

The study [155] conducted by Prvan found that increasing window size does not signifi-
cantly affect model accuracy with a similar dataset.

The image generation procedure that has been described results in the creation of 3D
images with a 5× 5 shape. The first two parameters, i.e., 5× 5, represent the window size.
The third parameter, which is 36, indicates the depth of the image. In other words, the
output image is composed of 36 layers, each of which displays an HGCAL layer. Since
every second layer is used for triggering in the electromagnetic part of the calorimeter, it
is described with the first 14 images, while the hadronic part consists of the remaining 22
images, one for each layer. Depending on the specific requirements, it is possible to use the
image of the entire endcap or just the individual CE-E or CE-H components. This flexibility
allows for a more customized and efficient approach to observing the endcap, as it can be
tailored to suit the specific needs of the user.

Upon analyzing the longitudinal profile following the image generation process, it was
discovered that layer 29 contains a peak that does not align with the actual physical properties
of the particles being observed. Instead, this peak is a result of the calibration process and
does not represent an actual energy deposit in that particular layer. As a result, layer 29 will
be excluded from the image.

In the thesis, the models are tested on full HGCAL image (Figure 2.22), but for some

45

Chapter 2. MATERIALS AND METHODS

(a) Example of the first step in image generation: the
projection of deposited particle energies (on the layer).

(b) The histogram applied on layer image.

Figure 2.21. Visualizing the steps involved in creating one layer (13) image.

of the tested approaches, like reduction of the longitudinal profile, the HGCAL image is
split into CE-E and CE-H image parts. CE-E image has a shape 5× 5× 14 (Figure 2.22)
and shows only the electromagnetic part of the calorimeter, while CE-H image with a shape
5×5×22 (after layer 29 exclusion 5×5×21) represents a hadronic part.

Figures 2.23a, 2.23b, 2.23c, and 2.23d represent the longitudinal profile for EM, PU,
QCD, and pion showers. For easier and more detailed analysis, layers 6, 17, and 29 are
specifically marked. The EM showers deposit most of its energy between channels 6 and 17,
while channel 29 marks the beginning of the hadronic part. It is clear that compared with
EM showers (on average), PU and QCD start showering earlier, with a peak reached before
layer 10 and a higher energy deposit in the hadronic part. The average pion shower profile
is significantly different from other types of showers. The pion shower shows a significantly
higher proportion of the hadronic part.

46

Chapter 2. MATERIALS AND METHODS

(a) Complete HGCAL image (b) CE-E part image

Figure 2.22. Example of generated 3D HGCAL image.

2.4 Data Reduction Methods

The effectiveness of ML algorithms largely depends on the quality of data they operate on.
If data is incomplete, irrelevant, or contains extraneous information, ML algorithms may
produce inaccurate or useless results. Therefore, it is essential to ensure that the data used
for the ML model is of high quality and relevant to the problem at hand. Accordingly, data
preprocessing is a crucial step in the ML workflow, essential for achieving accurate and
reliable results. Proper preprocessing can significantly impact the performance and accuracy
of ML models. A comprehensive review of data preprocessing techniques can be found
in [156] and [157]. In time-sensitive applications such as L1T, it is imperative to process
data quickly and efficiently, as any delay in processing can potentially result in the loss of
important data. With the rise of real-time applications, new approaches to data preprocessing
have emerged, and some of these methods were proposed by the authors in [158].

There is no universally agreed upon approach among data science researchers on the
number of steps involved in this process. For example, handling outliers, according to some
scientists, is a part of data cleaning, while others consider it as a separate step. Regardless
of the approach, some of the most important steps are data cleaning, reduction, scaling,
transformation, and partitioning, although the choice of applied techniques depends on the
nature of the data, and the requirements of the model. Below is a detailed description of the
steps used in this thesis.

The first stage in data preprocessing is data cleaning, which involves identifying and
correcting inconsistencies in the dataset, like errors and missing values. In data cleaning,
it is crucial to assess the entire scope of the problem and the method used rather than just
the values present. For example, one of the standard techniques in data cleaning is to filter

47

Chapter 2. MATERIALS AND METHODS

(a) EM

(b) PU

(c) QCD

(d) pions

Figure 2.23. Histogram representing average longitudinal profiles for particles/classes used
in experiment.

48

Chapter 2. MATERIALS AND METHODS

out unwanted outliers, the data points that differ significantly from other values in a dataset.
Typically, values that lie far outside the expected range are considered outliers. They can
negatively affect model performance, and therefore, they are removed from analysis. This
technique is also known as trimming. In the experiment described in the thesis, pixel inten-
sities of generated HGCAL images can have large variations; quite often, they span a few
orders of magnitude. Particularly, the PU dataset has a considerable number of outliers that
require attention to ensure accurate analysis. However, in our specific case study, these out-
liers are the highest energy points, providing crucial information about the observed cluster.
The presence of outliers can indicate the discovery of new phenomena or anomalies, which
can provide valuable insights into the fundamental nature of particle interactions. Therefore,
removing them would result in a significant loss of important insights and valuable knowl-
edge. As such, it is necessary to use alternative methods to handle these outliers that do not
involve their outright removal.

One way to handle extreme values is by using capping. This method sets a maximum or
minimum limit and assigns values to the data points accordingly. Another method is robust
scaler normalization [159], which actually includes the next step of data preprocessing but,
at the same time, takes care of outliers. It reduces the impact of outliers by scaling the data
based on the median and interquartile range instead of the mean and standard deviation. Both
of these techniques can effectively manage outliers and produce more accurate results. Tests
are done with both techniques, and they show similar results. Capping requires minimal cal-
culations, making it highly efficient in terms of CPU usage, and generally does not increase
memory consumption. Therefore, due to its speed and resource efficiency, capping will be
applied in the thesis. The next stage of data analysis involves data transformation, which
entails converting raw data into a more appropriate format for analysis and modeling. This
includes feature scaling (standardization or normalization), a method used to bring numeri-
cal features to a similar scale. Feature scaling is applied to enhance the numerical stability
of models and expedite the training process. Another method in this step is data binning or
discretization, which involves converting numerical features to discrete ones using bins. In
Subsection 2.4.1.2, it will be demonstrated how a data quantization method will be used as a
reduction technique, which will produce an effect similar to discretization.

2.4.1 Data Refinement

The new detector structure provides detailed collision images. However, to meet latency
constraints set by L1T algorithms, the possibility of reducing the number of features through
dimensionality reduction is explored. When dealing with image data, the number of pixels
can be considered as the number of features; each pixel represents one feature. Even though
the window size in generated HGCAL images is quite small (5×5), a high number of image
channels (that correspond to HGCAL layers) are the reason for a high number of pixels -

49

Chapter 2. MATERIALS AND METHODS

features. If the entire HGCAL image is considered, the number of pixels would be 900 for
5× 5× 36 or 875 for 5× 5× 35 version. Thus, the data refinement process, consisting of
data selection and quantization, aims to reduce the quantity of data (i.e. data complexity)
that the network needs to deal with to achieve lower inference time while retaining a similar
performance level.

Two main approaches in dealing with high-dimensional data, feature extraction (FE) and
feature selection (FS) both contribute to the feature transformation process by modifying the
original set of features. FE is a process in which new features are created by combining the
original ones. In comparison, FS methods reduce the dimensionality of the dataset by keep-
ing the most important features and discarding the others. The study presented in [160] gives
a comprehensive review of various FE methods that reduce processing time while providing
higher recognition accuracy. While FE is the preferred approach in image processing, both
approaches are employed due to time and resource limitations, as they reduce data dimen-
sionality without significant performance degradation.

Data refinement is conducted in two steps: first, data selection, followed by data quanti-
zation.

2.4.1.1 Selection

The experiment utilizes ad-hoc techniques suitable for our specific physically motivated clas-
sification problem. In order to optimize computational time, two techniques are applied. The
first one involves filtering out irrelevant pixel values (FS approach). The second technique
engages in combining/summing particular image channels (FE approach), which reduces the
overall complexity of the algorithm. Each of the presented techniques is chosen based on
the combination of physics-based and logical-based reasoning. It is worth emphasizing that
feature selection is applied to full-precision data, using one of the following rules:

1. Keep energies above the threshold.

Analyzing HGCAL pixel values (trigger cells pT), shown in Figure 2.24, it is visible
that most of them have values less than 2 GeV.

The smallest energy values are considered to have minimal impact on determining if a
cluster represents a signal or background. Therefore, those values will be discarded by
applying the next criteria: a fixed threshold value of 0.1, 0.5 (default), 1, and 2 GeV is
applied, all pT values greater than the threshold are kept, and others are set to 0. By
setting the proposed thresholds to be small, it is considered that the TC energies are
significantly smaller than the cluster pT .

2. Keep maximum layer energy (single sample per layer).

With this approach, only the maximum energy value in each layer is kept, while other
values are set to 0. The idea behind this approach is to assume that the highest pT

50

Chapter 2. MATERIALS AND METHODS

Figure 2.24. Histogram representing distribution of all dataset values in case of EM vs MIX
(PU and QCD) dataset.

deposits have the most significant role in shower classification.

3. Capping.

Data capping is a statistical method in which the maximum value of a feature is set
to a specific value. This technique is often used to address outliers that can otherwise
distort the overall analysis. Because of its speed and resource efficiency, it is suitable
for L1T algorithms. During a preliminary test, the models were implemented in FPGA
using hls4ml, and a significant drop in accuracy was observed when dealing with non-
capped data. The drop was around 10% compared to QKeras model accuracy.

4. Reduction in longitudinal profile.

Andrews in [161] presented the idea of reduction of longitudinal profile based on the
next approach: detector images will consist of altogether just three subdetector chan-
nels, one each for CE-E, CE-H, and one for the reconstructed tracks. Inspired by that
approach, the following data refinement method is based on summing pt/pixels from
particular detector layers. By summing the values of individual layers, it is possible to
considerably reduce the image (channels) size, drastically decreasing the NN model’s
size and improving its overall performance. Two different solutions are examined:

• Considering the fact that EM shower tends to deposit most of its energy in the
CE-E section of the HGCAL, it is assumed that the information about CE-E
deposit is crucial. Therefore, CE-H layers are projected in one plane, reducing
the number of CE-H layers from 22 to 1. This approach is named E+Hf, and the
same logic with the CE-H part is also applied in the next solution.

• It is worth noting that EM showers reach their peak between layers 10 and 15,
which is later than PU and QCD showers. Based on this, the CE-E is divided

51

Chapter 2. MATERIALS AND METHODS

(a) Three CE-E + CE-H layers split (b) Summed pT in grouped layers

Figure 2.25. Distribution of pT across HGCAL layers for EM, PU and QCD showers used
in 3Ef+Hf approach.

into three parts. The first part is composed of layers 1-5, where the EM shower
begins. The second part is composed of layers 6-15, where the majority of the
transverse momentum is deposited, and the third part is composed of layers 16-
28, as shown in Figure 2.25a. Each part is summed (Figure 2.25b), resulting in
three 5 × 5 CE-E images, and the CE-H part is reduced, creating a single 5 × 5
CE-H image. This approach is referred to as 3Ef+Hf.

• This is the most aggressive reduction of the longitudinal profile. Here, each of
the CE-E and CE-H sections is projected in one plane, resulting in two 5 × 5
images representing the complete HGCAL.

2.4.1.2 Quantization

Data quantization allows further reduction in resource consumption. Representing contin-
uous values with discrete values reduces memory requirements, simplifies processing, and
enhances transmission efficiency. Fixed-point arithmetic is commonly used in FPGA-based
algorithms because it tends to run faster and use fewer resources compared to floating-point
arithmetic. Thus FPGAs, used in L1T, can process values represented by a low number of
bits much faster than those represented by multiple bits.

Two types of data quantization methods are examined in the work: linear and non-linear.
The quantization levels are uniformly distributed across the signal range in linear quantiza-
tion. In non-linear quantization, the relationship between the quantization levels is logarith-
mic, which is more suitable when the range of data is large, and higher accuracy is required
in the lower data range. Thus, data will be quantized in three different ways using custom
quantizers:

1. Selection bit(s). With this approach, all non-zero data values will have a value of 1. By
using just one bit for presentation for each value, memory usage can be significantly
reduced. Also, the overall performance of the system will be optimized.

52

Chapter 2. MATERIALS AND METHODS

(a) In the case of a uniform quantizer (b) In the case of non-uniform quantizer

Figure 2.26. Quantizer function y = Q(x)

2. Uniform quantizer.

Min-max normalization is applied on capped data, multiplied by 2n − 1, where n is a
chosen number of bit width. The result is rounded to the nearest integer. The proposed
quantizer function is visualized in Figure 2.26a.

Q(x) = round(
x−min

max−min
· (2n −1)) (2.15)

3. Non-uniform quantizer. The quantizer is defined as

Q(x) =

round(log2(x)), if x > 0

−2, otherwise
(2.16)

The next step is to rescale data (using a min-max scaler), so it does not contain negative
values. The non-uniform quantizer function is visualized in Figure 2.26b.

An overview of data refinement methods described in this section is given in Table 2.2.

Table 2.2. Data refinement methods.

Refinement Methods
Selection Quantization

Keep energies above the threshold Selection bit
Keep layer maximum Uniform quantizer

Capping Non-uniform quantizer
Reduction of longitudinal profile

2.5 Alternative Image Generation Process

This chapter introduces an alternative approach to generating HGCAL images used to cap-
ture the decay of particles through HGCAL layers. The quality of HGCAL images is critical

53

Chapter 2. MATERIALS AND METHODS

for the accurate functioning of ML algorithms planned to be used for the selection of phys-
ically interesting events in L1T. Therefore, there is always a need for a new approach that
could eventually improve the accuracy of the trigger algorithm by providing more accurate
image data. Exhaustive tests of NN models with various reduction methods will be per-
formed using the database generated by the traditional approach, while basic NN models
will also be tested on databases generated by alternative approaches.

2.5.1 Consecutive Layers Based Approach

The main difference between the suggested approach and the traditional algorithm, described
in Section 2.3.4, is a selection of the deposition axis, the direction along which pT is de-
posited by particles during interactions with a detector material. Both approaches create
virtual images corresponding to each of the HGCAL layers through a series of precise steps.
In the traditional approach, the deposition axis is a line connecting the center of mass of
the observed 3D cluster and the center of the detector. In the subsequent step, which will
remain unchanged, the point where the deposition axis intersects with each individual layer
will be identified as the center of the ROI on that particular layer. Instead of the line passing
through the cluster barycenter and the detector center, the emphasis would be on observing
the longest sequence of layers where the observed cluster has energy deposits. This state-
ment particularly applies to PU images, where the decay may occur in a direction other than
the beamline. The visualization of the deposition axis for two EM samples is shown in Fig-
ure 2.27. It can be observed that in certain situations, the axes are nearly identical, whereas in
other scenarios, they are considerably different. Hence, it is likely that the resulting HGCAL
images will be quite similar in some situations, while in others, they will vary significantly.
The implications of these findings are clearly visible in a generated HGCAL image, as can
be seen in Figure 2.28.

The presented approach suffers from the serious limitation that there are shower shapes
for which this approach is not favorable, and the generated images do not show enough data
for a valid description of the shower.

2.5.2 Principal Component Analysis Based Approach

Considering the importance of the choice of deposition axes in image formation, the Princi-
pal Component Analysis (PCA) is used in this approach.

PCA is a widely used method for reducing data dimensionality, first introduced in 1901
by Pearson [162]. He identified the direction (known as the first principal component) that
best approximates the set of points representing the data in terms of least squared error. In-
dependently, Hotelling also developed the method and presented it in 1933 [163]. PCA func-
tions by transforming the original variables into a set of new, uncorrelated variables, known
as principal components, that are orthogonal to each other. The first principal component

54

Chapter 2. MATERIALS AND METHODS

Figure 2.27. Visualization of traditional deposition axis (red) and the one based on the
longest consecutive layers (black). In the left EM sample (clusterID=3139240274), the axes

almost coincide, while in the right one (clusterID=3122017111), they are significantly
different.

(a) Generated using traditional approach. (b) Based on an alternative approach.

Figure 2.28. HGCAL image (for EM clusterID=3122017111).

is a linear combination of the original predictor variables that captures the maximum vari-
ance of the dataset. It indicates the direction of the highest variability in the data. The first
principal component represents the line that best fits the data by minimizing the sum of the
squared distance between a data point and the line. Therefore, the first principal component
will represent the deposition axes in this image generation approach.

The visualization of the deposition axis for two EM samples is shown in Figure 2.29.
It can be observed that the axes are nearly identical to those used in the standard approach
(2.3.4), which was not the case in the previous approach, as can be seen in Figure 2.27. As a
result, generated HGCAL images will be very similar.

55

Chapter 2. MATERIALS AND METHODS

In the HGCAL project, PCA has been used for different purposes. In the TICL frame-
work, which is a crucial component of the CMS experiment, designed to enhance the re-
construction of particle tracks and clusters, PCA is used to derive the shower propagation
direction through the three principal axes [164]. In the Mask Region-Based CNN used for
the HGCAL study described in [165], authors use PCA to determine the mask of the object.

Figure 2.29. Visualization of traditional deposition axis (red) and the one based on the PCA
approach (black). For both clusters, the axes almost coincide.

For future work, the intention is to investigate the use of the PCA approach in the required
latency time. Research papers and articles have been published over the years, presenting
various methodologies for implementing PCA in FPGAs [166, 167], although a potential
problem is the speed of execution.

2.6 Model Development and Reduction Methods

The objective of this research is to develop an NN model that can accurately classify EM
showers from physically uninteresting backgrounds while operating under strict constraints
set by L1T. The following chapter presents the structure of NN used in the experiment.

In 1989, Cybanko in [168] proved that standard multilayer feedforward networks have
the capability to approximate any continuous function of n real variables to any desired
accuracy. The same year, Hornik et al. [114] showed that multilayer feedforward networks
with as few as one hidden layer are universal approximators. In recent years, several state-
of-the-art models like CoAtNets [169], ResNet [170], EfficientNet [171], YOLO [172], and
many others have been developed. These models combine advanced techniques such as
different types of convolutions, attention mechanisms, and residual connections to achieve
excellent results. As shown in Figure 2.30, there is a notable trend in the growth of the
number of parameters in state-of-the-art (SOTA) models. The consequence is that the high
computational complexity of SOTA models and their requirements on the resources do not

56

Chapter 2. MATERIALS AND METHODS

allow their usage in L1T conditions, where power consumption is limited, and the budget on
available devices is restricted.

Figure 2.30. Larger neural network models require more computing power, especially in
fully connected layers, but there’s an ongoing effort to reduce deep neural network sizes.

Despite this, there’s an exponential growth in model sizes due to the need to solve
increasingly complex problems with higher accuracy. The pink-colored nodes in the graph

represent AlexNet and VGG16 models, now regarded as over-parameterized [173].

2.6.1 Model Architecture

The first strategy to reduce computational complexity is to limit the network size, which can
be achieved by reducing the number of layers and neurons in the model. However, the model
performance would be compromised in more complex tasks. Despite this limitation, it has
been shown in [155, 174] that MLP with just three layers can be effectively employed in EM
shower/PU classification. In both cases, the models classified the EM and PU background.

The thesis examines a similar approach, along with two other background scenarios:
one with a background represented by QCD events, and another with a mixed background
of both QCD and PU events, named MIX. The analysis involves two simple NN models:
MLP and CNN. To ensure the optimal performance of the models, the hyperparameter opti-
mization software framework Optuna [175] is used. By optimizing the hyperparameters, the
produced models are configured in an optimal manner, leading to improved model accuracy.
Optuna employs various optimization algorithms including tree-structured Parzen estimator,
an algorithm that efficiently exploits the hyperparameter search space. It uses the history of
previously evaluated hyperparameter configurations to sample the next set of configurations.
The evaluation of these configurations is done using accuracy as preferred metric. Focusing

57

Chapter 2. MATERIALS AND METHODS

on the most promising regions of the hyperparameter space can lead to faster convergence
and improved results compared to random search or manual tuning.

The search space for the CNN consists of 6 to 16 kernels for the Conv2D layer and 8 to
18 nodes for the 1 to 2 following dense layers. This has resulted in a total of 1452 possible
network combinations. On the other hand, the MLP search space involves 2 to 3 layers with
4 to 16 nodes each, generating a total of 2366 combinations. For both models, the search
space contains ReLu and Sigmoid as the proposed activation functions for intermediate lay-
ers, while Softmax is used for the activation function in the output layer. The Sigmoid and
ReLU activation functions were selected for their ability to introduce non-linearity and help
prevent vanishing gradient problem, while Softmax can handle both binary and multi-class
classification tasks. Three optimizers - Adam, RMSprop, and SGD, were chosen within the
Optuna search space to balance efficiency, adaptive learning rates, and convergence speed,
each with a range of learning rates. This greatly increases the number of possible combina-
tions in the search space to 8712 for CNN and 14 196 for MLP. When multiple suggested
architectures have similar accuracies, the one with the lowest number of trainable parameters
is selected.

Table 2.3 displays the optimization results for the hidden layers of CNN and MLP models
for every classification case. For instance, the CNN model for the EM vs. PU classification
task consists of a convolutional layer with eleven 3 × 3 kernels, followed by one dense layer
with 12 nodes. It is worth noting that the optimizer provides a fairly similar neural network
structure for MLP in all classification tasks. However, the suggested CNN for EM vs. MIX is
a bit larger, as it has an additional dense layer. This is expected as the classification problem
is more complicated.

For the activation function in all hidden layers, for each of the models, the optimizer
suggests ReLu (while classification is performed using Softmax). For both models, the loss
function is the binary cross-entropy, and optimization is conducted using the Adam algo-
rithm, with a specific learning rate (in the range from 0.009 to 0.07) for each model and
classification case obtained by the optimizer. The batch size value is 128, providing a reason-
able balance between speed and accuracy, and early stopping is implemented if no progress
is seen beyond fifteen epochs. Early stopping is a technique used to prevent overfitting in
ML models. It works by stopping the training process if the performance on the validation
set starts to decrease. Hence, it is considered a form of regularization that reduces model
complexity and prevents overfitting [176].

The training and testing sets for all classification tasks contain balanced samples of
classes. In total, the database for binary classification contains 93 000 samples. 31 000
of each class. Out of these, 27 000 samples of each type were used for training and vali-
dation, and 4 000 were used for testing. The first group of tests was conducted on the full
data set without any normalization, selection, or quantization. Input images, in most cases,
represent the full HGCAL profile, that is, all 36 (35) layers (as explained in Section 2.3.4).

58

Chapter 2. MATERIALS AND METHODS

Table 2.3. The results of model structure optimization for CNN and MLP for each
classification case. The table describes hidden layers.

case/model CNN MLP

EM vs. PU
conv1 layer: 11 kernels
dense1 layer: 12 nodes

dense1 layer: 5 nodes
dense2 layer: 13 nodes

EM vs. QCD
conv1 layer: 12 kernels
dense1 layer: 10 nodes

dense1 layer: 4 nodes
dense2 layer: 15 nodes

EM vs. MIX
conv1 layer: 6 kernels
dense1 layer: 12 nodes
dense2 layer: 13 nodes

dense1 layer: 8 nodes
dense2 layer: 13 nodes

Architectures of the developed networks for EM vs MIX classification case are presented in
Figure 2.31 and 2.32.

Figure 2.31. ASCII diagrams showing architecture and parameters of CNN for EM vs MIX
classification scenario.

Figure 2.32. ASCII diagrams showing architecture and parameters of MLP for EM vs MIX
classification scenario.

59

Chapter 2. MATERIALS AND METHODS

2.6.2 Model Quantization

Another strategy aiming to reduce time and memory consumption is the model quantization,
a technique for reducing the precision of numerical data (in this case weights, biases, values
of activation functions). The result of replacing 32-bit floating point numbers with 8-bit
integers (or less) is a smaller model size. Consequently, it needs less time to load it into
memory, memory consumption is reduced, and inference is faster. Using low-precision fixed
integer value representation can reduce memory footprint and latency by 16× [177].

There are two main approaches to network quantization: post-training quantization and
quantization-aware training. Post-training quantization is performed so that the network is
trained in full precision and then quantized to lower bit widths. Although it is fast and easy
to implement, it can suffer a major drawback when the precision level is set lower than 8 bits
[178], making it an inappropriate option for models requiring high levels of precision. On
the other hand, the quantization-aware training approach, involves quantization integrated
during training, which generally gives a smaller accuracy drop compared to the previous
technique. QKeras [179] and Larq [180] are libraries designed as quantization extensions of
the Keras API. This thesis employs the QKeras for model quantization, which enables the
development of efficient models suited for deployment on L1T resource-constrained devices.

2.6.2.1 QKeras

QKeras is a Python library that enables quantization-aware training. It uses a simple replace-
ment for standard Keras layers, which greatly simplifies the quantization process. QKeras
allows the usage of different quantization types and levels, including different activation
functions, making it possible to achieve heterogeneous quantization. This library uses the
concept of a straight-through estimator presented in [181]. It means the forward pass applies
the quantization functions, and the backward pass adopts the quantization as the identity
function to make the gradient differentiable [31]. A comprehensive research was done with
different types of kernel quantizers and quantized versions of activation functions, including
varying their settings (parameters). A decision is made to use the quantizer quantized_bits

because it maintained good accuracy even with aggressive quantization and was supported
by hls4ml. It is defined as follows

quantized_bits(x) = 2int−b+1clip(round(x∗2b−int−1),−2b−1,2b−1 −1) (2.17)

for weights and kernels, where x is input, b is the number of bits used for the quantization, and
int is the number of bits to the left of the decimal point. According to QKeras documentation;
the syntax of this method is as follows:

quantized_bits(bits = 8, integer = 0,symmetric = 0,keep_negative = 1,al pha =

None,use_stochastic_rouding = False).

60

Chapter 2. MATERIALS AND METHODS

While the meaning of parameters bits and integer is clear, there are some additional
parameters that are possible to adjust:

• symmetric

The use of symmetric versions for weights and biases; this quantizer should use it to
properly converge and eliminate the bias. Available values: 0 or 1.

• keep_negative

Available values: 0 or 1. If the value of this parameter is 1, negative numbers are not
clipped.

• al pha

This parameter changes the absolute scale of the weights while keeping them dis-
cretized within the chosen bit width. Available values: None,auto,auto_po2. Further
details can be found in [31].

• use_stochastic_rounding

When the number of bits is decreased, rounding introduces bias to the number system.
To mitigate the effect of bias, Numpy rounds values to the nearest even instead of
rounding up. In the [182], authors suggested using stochastic rounding, which uses
the fractional part of the number as a probability to round up or down, which can be
set using this parameter.

Quantized_relu is chosen as a quantized replacement for the ReLu activation function,
used in the inner layers of models, as shown in Figure 2.33, and compared to the regular
ReLu function.

Figure 2.33. QKeras implementation of quantized_relu function in a 2- (purple), 3-bit
(green and blue) and 6-bit (yellow) precision and for 0 or 1 integer bits. For comparison,

the unquantized ReLU function is depicted in orange in the graph [31].

61

Chapter 2. MATERIALS AND METHODS

62

3 RESULTS AND DISCUSSION

The following chapter presents the outcomes of the model and data reduction methods de-
scribed in Chapter 2. The chapter begins with the results of binary classification, followed by
the results of multiclass classification. The subsequent section discusses the results obtained
using alternative images, and then the chapter concludes with the presentation of results from
the FPGA implementation.

3.1 Binary Classification

The following chapter presents the results of the model and data quantization and selection
methods described in the previous section.

3.1.1 Base Neural Network Models

Three different binary classification tasks are conducted. In each task, the training and testing
sets have an equal number of instances for each class, ensuring a balanced representation of
the classes within the dataset which enables better generalization of models. There are a total
of 62 000 samples in each classification task, consisting of 31 000 EM samples and 31 000
background samples (either PU or QCD). Out of these, 54 000 (87%) samples of each type
were used for training and validation, and 8000 (13%) were used for testing. The initial set
of experiments was performed on the dataset without any normalization, feature selection, or
data quantization. Input images represent the full HGCAL profile, that is, all 36 (35) layers.

The results of baseline NN methods for classifying EM versus different types of back-
ground (PU or QCD) are shown in Table 3.1.

Table 3.1. The results for the base CNN and MLP model for EM vs. different background
(PU or QCD).

Model Acc Prec Rec F1 AUC FPR FNR Param #

PU

CNN 0.9794 0.9873 0.9712 0.9792 0.9911 0.0125 0.0288 4702

MLP 0.9762 0.9842 0.9680 0.9761 0.9909 0.0155 0.0320 4486

Q
C

D CNN 0.9650 0.9723 0.9573 0.9647 0.9893 0.0272 0.0428 4904

MLP 0.9637 0.9603 0.9675 0.9639 0.9905 0.0400 0.0325 3611

63

Chapter 3. RESULTS AND DISCUSSION

According to the results shown in Table 3.1, the CNN model provides slightly better ac-
curacy than MLP in each classification case. Although the CNN network dominance is more
pronounced for EM vs PU case, the results show that based on some metrics, such as FNR,
MLP performs slightly better in the EM vs QCD classification. Both models perform better
at distinguishing between EM and PU clusters than between EM and QCD jets. The reason
is a higher difference in average cluster energy deposits between EM and PU, as shown in
Figure 3.8. In the remaining part of the thesis, for the binary classification problem, the
focus is put on one vs all task, specifically EM vs. MIX. In this scenario, the background is
mixed with equally distributed PU and QCD samples, which is closer to a realistic situation.
The classification results are given in Table 3.2, with the corresponding ROC curve shown
in Figure 3.1.

Table 3.2. The results for the base CNN and MLP model for EM vs. MIX.

Model Acc Prec Rec F1 AUC FPR FNR Param #
CNN 0.9701 0.9688 0.9715 0.9702 0.9919 0.0312 0.0285 2753

MLP 0.9671 0.9710 0.9630 0.9670 0.9897 0.0288 0.0370 7153

The EM vs. MIX classifier, as expected, performs better than EM vs. QCD classifier, but
worse than EM vs. PU.

Figure 3.1. Receiver Operator Characteristic (ROC) curves for EM vs MIX classification. A
calculated performance metric is the Area Under the Curve (AUC) which is the integral of

the ROC curve.

Although the MLP model has almost three times more parameters than a CNN, the
CNN can still consume more computational resources. The reason is convolution opera-
tions, which are computationally intensive. In contrast, MLPs use fully connected layers,
where each neuron is connected to every neuron in the previous layer, which leads to a
large number of parameters. Convolutional operations require complex calculations as fil-
ters are utilized to scan the input data to detect features, demanding significant memory and

64

Chapter 3. RESULTS AND DISCUSSION

(a) EM shower with CE-E profile shifted -1
layer.

(b) EM shower with CE-E profile shifted +2
layers.

Figure 3.2. Examples of shifted EM showers.

processing power. Therefore, despite having fewer parameters, CNNs often require more
computational resources due to the nature of their convolutional operations.

3.1.2 Model Analysis

Model analysis involves evaluating and assessing the performance, behavior, and charac-
teristics of an ML model. This process includes various techniques and methodologies to
understand how well the model is performing, diagnose potential issues, and gain insights
into its strengths and weaknesses. This section examines three critical aspects of model
performance: model robustness, error analysis, and the interpretation of model decisions.

3.1.2.1 Model Robustness

To perform the robustness analysis, the tests utilize artificially introduced offsets in energy
distribution profiles regarding the layer in which particular energy appears. A dataset is
extended with a new set of images created by shifting CE-E energy deposits of each particle
type one or two layers forward or backward. The effect of the shifting process on the EM
shower longitudinal profile is shown in Figure 3.2.

The extended dataset contains 270 000 training images and 40 000 test samples, equally
distributed between EM and MIX background samples. Conducted tests could be considered
a type of adversarial training [183], an ML technique that trains models to be robust against
adversarial examples. The examples are intentionally created with deviations from expected
values (in our test, images) to mislead the model into making inaccurate predictions. Ad-
versarial training is based on the idea that models trained on adversarial examples are more
robust to real-world variations and distortions in the data. Using the adversarial approach, it
is expected that the model trained on the dataset extended using the described technique can
cover numerous variations and make predictions resistant to these variations. The NN mod-
els showed good robustness, maintaining accuracy for up to three layers of offsets (approx.

65

Chapter 3. RESULTS AND DISCUSSION

10% of ECAL size), as shown in Table 3.3. However, an accuracy drop was observed for
offsets of four or more layers, especially in MLP.

Table 3.3. The results for the base CNN and MLP model for EM vs. MIX, dataset extended
with samples shifted up to ± 2 layers.

Model Acc Prec Rec F1 AUC FPR FNR Param #
CNN 0.9728 0.9776 0.9678 0.9727 0.9903 0.0222 0.0322 2753

MLP 0.9658 0.9643 0.9674 0.9658 0.9882 0.0358 0.0326 7153

Furthermore, in [184], we have demonstrated that the same family of NNs can adapt to
change. It means that it was shown that models pre-trained on electron EM showers (which
we used in our experiments) can effectively classify events containing photon EM showers.
The difference between electron and photon EM showers is that electrons start showering
earlier compared with photons. This results in a longitudinal profile shifted by one layer.
The described findings confirm the robustness of the proposed approach.

3.1.2.2 Error Analysis

The error analysis conducted in this study revealed some potential limitations of the model.
The findings suggest that the model faces difficulties in accurately predicting outcomes for
low-energy EM showers, particularly in two cases: when EM starts showering in earlier lay-
ers than usual and for the EM instances wherein hadronic deposits are higher than usual.
The analysis shows that the use of low-level features, such as HGCAL images and energy
deposits, is not sufficient to handle these specific scenarios. Therefore, it should be consid-
ered (in some future work) to include additional features in order to achieve the desired level
of accuracy.

3.1.2.3 Model Interpretation

NN model interpretation refers to understanding how the model makes decisions. In this
thesis, the SHAP (Shapley additive explanations) framework [185, 186] is used to enable
the models’ interpretability. By using SHAP, it is possible to understand the contribution
of each feature to a model’s output, which helps to understand how the model makes a
decision. SHAP is based on the game theory approach, where each feature is considered as
a player. As a result, the framework generates SHAP values that give insight into feature
importance. Shapley values fairly distribute the total payout among the players (features)
based on their marginal contributions. As a replacement for the NN model, which is not easy
to understand, the framework introduces a simple approximation of the original model, the
so-called explanation model. Furthermore, SHAP uses Additive Feature Attribution Methods
to correctly distribute the overall impact of features. The approximated output of the original
model is then calculated by summing the effects of all feature attributions.

66

Chapter 3. RESULTS AND DISCUSSION

SHAP examined both MLP and CNN models, providing insights into the critical aspects
that influence model predictions. After reviewing the literature and documentation for the
SHAP tool, it was found that no instances of its implementation for 3D image classification
were discovered. As a result, adjustments to the tool to fit HGCAL data were made, which
led to the limitation of some of the (standard) SHAP functionalities. Despite this, valuable in-
sights into the operation of the models were gained, enabling a deeper understanding of how
each individual feature contributed to overall performance. The analysis helped to identify
the most important features that have a significant impact on making accurate predictions. A
summary of the key findings is given below:

• To enable the usage of MLP for signal/background classification based on raw detector
data, the 3D HGCAL image is transformed into a 1D array of values, where each value
represents a pixel. To be precise, there are 5× 5× 35 = 875 pixels in the flattened
version of the image, and these pixels can be considered as features in the classification
task. In the first version of the test, the detailed position of each pixel/feature (layer,
row, and column) was observed. However, the position of each pixel in a particular
layer is less significant than the layer itself, therefore, in the subsequent tests, the
shape values belonging to all features inside the particular layer are summed. This
approach offered a more comprehensive understanding of layers’ importance in the
model’s inference. The plot is given in Figure 3.3 showing the most significant features
that affect the prediction of a single observation, along with the magnitude of the
SHAP value for each feature.

Figure 3.3. A plot showing the most influential features of the MLP model, ranked by their
effect on predictions. The plot displays the SHAP value distribution for each feature, with

the x-axis representing the numerical value of the feature’s influence on a specific
prediction.

67

Chapter 3. RESULTS AND DISCUSSION

The y-axis displays the features ranked according to their effect on the model’s pre-
dictions, while the x-axis represents the range of achieved SHAP values. The plot
visualizes the SHAP value for each feature, giving insight into a feature’s influence on
a specific prediction.

The sum of SHAP values for all the input features corresponds to the difference be-
tween the baseline (expected) model output and the current model output for the pre-
diction being explained [187]. The color of the plot indicates whether the feature
contributes (red) or withdraws (blue) to prediction. Upon closer examination of the
diagram, it is noticeable that the features or pixel positions with the greatest impact
on the prediction are primarily located between layers 7 and 15, with the exception
of layer 3 (Figure 3.3). These are the layers in which both EM and background parti-
cles reach peak energy deposition (for reference, please see Figures 2.23a, 2.23b and
2.23c). Eventually, the NN models could be expanded with an attention mechanism to
allow the models to selectively focus on relevant information, such as layers with the
highest impact on prediction. This could potentially lead to improvements in perfor-
mance.

• The CNN architecture was also analyzed using the SHAP framework to determine the
importance of individual features. However, the SHAP documentation does not pro-
vide a mechanism for visualizing the 3D regions with the strongest influence on the
model’s decisions. Therefore, the custom visualization that follows standard SHAP
rules is created. This visualization produces a figure wherein red shades of pixels in-
dicate the features that lead the model to predict that an HGCAL image corresponds
to an EM shower, while blue shades of pixels indicate the features that push the model
away from predicting that an image belongs to the EM class. Figure 3.4 gives a visu-
alization of an example of SHAP local interpretation, which refers to the process of
calculating the SHAP values for features of a particular instance.

This helps gain insights into which features played the most significant role in making
the decision. It is evident that the majority of the (dark) red areas are concentrated in
the layers where EM showers have the highest energy deposits. For reference, please
see Figure 2.23a. This suggests that the model pays significant attention to these re-
gions when predicting an EM shower.

68

Chapter 3. RESULTS AND DISCUSSION

Figure 3.4. A visualization of SHAP local interpretation, calculating the SHAP values for
features of an individual sample. Red-shaded pixels indicate the features that cause the
model to predict that an HGCAL image depicts an EM shower, while blue-shaded pixels

indicate the features that push the model away from predicting that an image belongs to a
given class. (Remark: absorber layers are not shown in the figure. Therefore, there are 14

CE-E + 21 CE-H layers.).

3.1.3 Model Quantization

As explained in Section 2.6.2.1, it is decided to use QKeras’s quantizer quantized_bits for
the weights, biases, and kernels, and quantized_relu is for a quantized replacement for the
ReLu activation function. It is important to emphasize that in this case, only the model is
quantized, not the input data. To determine which level of quantization to choose, tests were
performed by iterating over the quantization levels in the range from 2 to 16 (bits). The
comparison of the distribution of weights for the 1st convolutional layer for models tested
with different quantization levels is shown on Figure 3.5. The purpose of the tests was to
examine the effect of weight/bias/kernel quantization level on model accuracy. The results
of the tests revealed there is no significant difference in observed metrics, as can be seen in
Table 3.4.

The comparison of accuracy and FNR for different quantization levels given in Figure 3.6
shows that accuracy is very similar for all quantization levels, while FNR varies more. There-
fore, in order to reduce the memory footprint and processing requirements of the model,
aggressive 2-bit quantization is chosen to be applied for both weights/biases and activation
function, even if FNR is higher than, for example, for 16-bit quantized MLP model or 4-bits
quantized CNN model.

69

Chapter 3. RESULTS AND DISCUSSION

Figure 3.5. Distribution of weights for the 1st convolutional layer for each of tested model
with applied different quantization levels: 2,3,4,6,8,16.

70

Chapter 3. RESULTS AND DISCUSSION

Table 3.4. The results of the CNN model and MLP for different quantization levels.

Quant. level Acc Prec Rec F1 AUC FPR FNR
C

N
N

no quant. 0.9701 0.9688 0.9715 0.9702 0.9919 0.0312 0.0285
2 0.9722 0.9807 0.9635 0.9720 0.9856 0.0190 0.0365

3 0.9726 0.9756 0.9695 0.9725 0.9863 0.0243 0.0305

4 0.9732 0.9752 0.9712 0.9732 0.9886 0.0248 0.0288

6 0.9739 0.9832 0.9643 0.9736 0.9886 0.0165 0.0357

8 0.9726 0.9814 0.9635 0.9724 0.9884 0.0182 0.0365

16 0.9736 0.9793 0.9677 0.9735 0.9906 0.0205 0.0323

M
L

P

no quant. 0.9671 0.9710 0.9630 0.9670 0.9897 0.0288 0.0370

2 0.9720 0.9814 0.9623 0.9717 0.9848 0.0182 0.0377

3 0.9705 0.9806 0.9600 0.9702 0.9896 0.0190 0.0400

4 0.9699 0.9772 0.9623 0.9696 0.9880 0.0225 0.0377

6 0.9699 0.9762 0.9633 0.9697 0.9918 0.0235 0.0367

8 0.9692 0.9749 0.9633 0.9691 0.9893 0.0248 0.0367

16 0.9715 0.9775 0.9653 0.9713 0.9898 0.0222 0.0348

Figure 3.6. The effect of weight/bias/kernel quantization level on CNN and MLP model: (a)
accuracy (as a function of bit width), (b) FNR (as a function of bit width).

In the rest of the thesis 2-bit quantized CNN is referred to as QCNN, and accordingly, the
quantized 2-bit version of MLP is named QMLP. If there are more QCNN (QMLP) models
compared, this versions of QCNN (QMLP) models are referred to as "base".

The performance of the QCNN and QMLP is summarized in Table 3.5 and Figure 3.7.
The study has demonstrated that the quantized models have the same discrimination power
as the baseline architectures. This is an important finding, considering the fact that trigger
algorithms will be implemented on FPGAs devices with limited memory and processing
abilities. Therefore, from now on, the thesis will focus only on quantized models. Comparing
QCNN with QMLP, it is apparent that both models provide very similar results. However,
QCNN performs slightly better in terms of all evaluated metrics. This observation confirms

71

Chapter 3. RESULTS AND DISCUSSION

that convolutional layers ensure better performance in computer vision problems.

Table 3.5. The results for the 2-bit quantized CNN and MLP models.

Model Acc Prec Rec F1 AUC FPR FNR Param #
CNN 0.9701 0.9688 0.9715 0.9702 0.9919 0.0312 0.0285 2753

QCNN 0.9722 0.9807 0.9635 0.9720 0.9856 0.0190 0.0365 2753

MLP 0.9671 0.9710 0.9630 0.9670 0.9897 0.0288 0.0370 7153

QMLP 0.9720 0.9814 0.9623 0.9717 0.9848 0.0182 0.0377 7153

Figure 3.7. ROC curves comparison for QCNN and QMLP.

3.1.4 Comparison with Baseline Algorithms

This section evaluates the outcomes of traditional classification methods, such as cut-off,
SVM, and RF, as basic algorithms for comparison with proposed NN models.

3.1.4.1 Cut-Off

In addition to the comparison with ML methods SVM and RF, NN models will be compared
with a cut-off, a method of event selection often used in HEP to identify specific particles.
This approach involves applying specific criteria or "cuts" on the observed events to distin-
guish events that correspond to the desired physical processes. The cut-based analysis is an
example of linear classification, and this kind of selection is commonly used in various HEP
experiments, including CMS [188]. The method applies selections to one variable at a time,
which makes it robust. However, its main disadvantage is that it does not take correlations
into account, which can lead to low signal efficiency and high background rate.

The data set contains ∼31 000 samples for each of the three types of clusters: EM, PU,
and QCD. The comparison shown in Figure 3.8a and 3.8b highlights a significant difference

72

Chapter 3. RESULTS AND DISCUSSION

(a) For EM and PU

(b) For EM and QCD

Figure 3.8. Comparison of average clusters energies.

between the average pT of EM clusters and that of PU or QCD clusters. It indicates that EM
clusters have higher pT values on average than the PU or QCD clusters.

It is possible, with high accuracy, to determine whether a cluster is EM by setting a cut-
off value for its pT and accepting or rejecting it based on that. The reason behind this is
that the low pT cluster is likely to be just background noise. The experiment involves using
two different cut-off values. The first one is the maximum pT value of the PU (QCD) cluster,
which is the point beyond which can be assumed that the cluster is an EM. The second cut-off
value is the pT value of the third quartile PU (QCD) cluster, which is the point that separates
the top 25% energetic of PU (QCD) clusters from the rest.

Observing EM samples, 9228 of them, or 29.82%, are low pT EM clusters, EM clus-
ters with pT lower than maximum PU cluster pT that would be lost, using these criteria.
Compared with QCD clusters, there are 12 527, or 40.48% low pT clusters. In the case of

73

Chapter 3. RESULTS AND DISCUSSION

the third quartile cut-off value, 222 EM clusters (0.72 %) are lost in the case of the EM/PU
classification and 164 (0.53 %) in the EM/QCD classification. On the other side, using a cut-
off value lower than the maximum PU (QCD) cluster pT would lead to the rapid growth of
the number of wrongly classified PU (QCD) clusters that will then be stored unnecessarily,
wasting storage space and resources.

This suggests that the L1T cannot rely solely on the cut-off applied on cluster pT value to
determine whether to accept or reject clusters. Thus, alternative classification criteria must
be employed to ensure accurate and reliable EM cluster selection.

3.1.4.2 Support Vector Machine

In the SVM part of the experiment, scikit-learn’s SVM module was tested with various ker-
nels, including linear, polynomial, and radial basis function (RBF), with default parameter
settings. The results showed that the selection of kernel had a major impact on the model’s
performance, emphasizing the significance of choosing the appropriate kernel. After ana-
lyzing the results, it is observed that the SVM model demonstrated robust performance with
linear and RBF kernels (and default settings), achieving high accuracy rates and low error
rates. It was found that the linear kernel performed slightly better than the RBF kernel,
achieving higher accuracy rates, AUC, and lower FPR and FNR. The results for SVM using
all kernel types are given in Table 3.6. Further, the combination of cross-validation and grid

Table 3.6. The results of Support Vector Machine classifier.

Kernel Acc Prec Rec F1 AUC FPR FNR
Linear 0.9728 0.9851 0.9600 0.9724 0.9728 0.0145 0.0400
Poly 0.9276 0.9985 0.8565 0.9221 0.9276 0.0013 0.1435

RBF 0.9705 0.9843 0.9563 0.9701 0.9705 0.0152 0.0437

search was used to explore different hyperparameter configurations, to find the most suitable
parameters for the SVM model. The explored hyperparameter search space contains the next
parameters with available values:

• C: 0.5, 0.1, 1, 10.

• gamma: ’scale’, 0.1, 001.

• kernel: ’linear’ and ’rbf’

creating altogether 24 combinations. The grid search has resulted in the following combi-
nation of tuned hyperparameters: C: ’0.1’, gamma: scale, kernel: ’linear’ but with no im-
provement in classification accuracy. Although the best RF results achieved with the linear

74

Chapter 3. RESULTS AND DISCUSSION

kernel are comparable with QCNN results, with slightly worse AUC and FNR, it is impor-
tant to remember that quantized NN enables further resource savings and increased execution
speed.

3.1.4.3 Random Forest

The performance of the RF classifier with default settings has been evaluated using the same
metrics as for previously tested NN models with the results presented in Table 3.7.

The hyperparameter optimization was done using the range of each of the hyperparameter
values:

• criterion: ’gini’ and ’entropy’,

• max_depth: 8, 16, 20.

• max_features: ’sqrt’, ’log2’ or None, when the parameter value will be the same as
n_ f eatures.

• n_estimators: available values are 100, 200, 300.

Out of 54 possible combinations, the grid search has resulted in the following combina-
tion of tuned hyperparameters: criterion: ’gini’, max_depth: 40, max_features: ’auto’,
n_estimators: 200. The achieved metrics are similar to those obtained with the predefined
settings, which are shown in the same Table 3.7.

Table 3.7. The results of Random Forest classifier (with optimized parameters).

Settings Acc Prec Rec F1 AUC FPR FNR
default 0.9684 0.9711 0.9655 0.9683 0.9684 0.0288 0.0345

optimized 0.9691 0.9723 0.9657 0.9690 0.9691 0.0275 0.0343

The accomplished accuracy and AUC are lower than in the NN model’s case, while FNR
is slightly higher. When using an RF classifier, the importance of each feature in the model
can be calculated using the feature_importance attribute calculated while the model has been
trained. The resulting feature importance ranking, shown in Figure 3.9, gives an indication
of which features are most crucial, which can be very useful in further analysis. Comparing
with the results of the SHAP analysis shown in Figure 3.3, it is observed that some layers (7,
3, and 9) are identified as most important in both analyses/models.

The grid search was attempted to optimize the recall score, but no improvement was
observed (maximizing the recall score minimizes FNR).

75

Chapter 3. RESULTS AND DISCUSSION

Figure 3.9. Visualization of feature analysis for optimized random forest classifier.

3.1.5 Classification Threshold Adjustment

From the results shown in Table 3.5, it is clear that two commonly used metrics to evalu-
ate the model performance, accuracy, and AUC, are for QCNN and QMLP models above
97% (AUC above 98%), indicating good performance. Following the findings from section
2.2.4.5, the J statistic is calculated for quantized NNs. For QCNN, the largest J statistic
(0.947) is achieved using a threshold value of 0.592667, and for QMLP, the maximum J
value (0.945) is achieved at a threshold of 0.754915. However, this threshold value selection
resulted in better FPR results but increased FNR value for both models, as seen in Table 3.8.

Table 3.8. The results of the QCNN and QML model for threshold belonging to largest J
statistic.

Thres. value Acc Prec Rec F1 AUC FPR FNR

Q
C

N
N 0.5 (default) 0.9722 0.9807 0.9635 0.9720 0.9856 0.0190 0.0365

0.592667 0.9731 0.9829 0.9630 0.9729 0.9856 0.0168 0.0370

Q
M

L
P 0.5 (default) 0.9720 0.9814 0.9623 0.9717 0.9848 0.0182 0.0377

0.754915 0.9725 0.9834 0.9613 0.9722 0.9848 0.0163 0.0387

On the other hand, aiming to optimize FNR with the trial and error approach, using a
threshold value of 0.1, FNR decreases to 0.026 for QCNN and to 0.0345 for QMLP. Although
the differences in achieved FNR may not look significant, it is important to remember that
the volume of the data set on which the model is intended to be used is very high. Therefore,
even a small decrease in FNR (increase in recall) results in a higher number of correctly
classified EM showers. For example, for QCNN, the difference between the best achieved
FNR and FNR obtained for the default threshold is 0.0105 (1.05%). Applied to a data set
with just 1,000,000 samples, it ends with 10,500 additionally recognized EM clusters and

76

Chapter 3. RESULTS AND DISCUSSION

some of them could have a significant role in some new physical discovery. A comparison
of results obtained using different thresholds is given in Table 3.9.

Table 3.9. The results of the QCNN and QMLP model for different threshold values.

Thres. value Acc Prec Rec F1 AUC FPR FNR

Q
C

N
N

0.1 0.9670 0.9606 0.9740 0.9672 0.9856 0.0400 0.0260
0.3 0.9691 0.9678 0.9705 0.9692 0.9856 0.0323 0.0295

0.5 (default) 0.9722 0.9807 0.9635 0.9720 0.9856 0.0190 0.0365

0.7 0.9729 0.9856 0.9597 0.9725 0.9856 0.0140 0.0403

0.9 0.9726 0.9904 0.9545 0.9721 0.9856 0.0092 0.0455

Q
M

L
P

0.1 0.9704 0.9750 0.9655 0.9702 0.9848 0.0248 0.0345
0.3 0.9710 0.9779 0.9637 0.9708 0.9848 0.0217 0.0362

0.5 (default) 0.9720 0.9814 0.9623 0.9717 0.9848 0.0182 0.0377

0.7 0.9725 0.9834 0.9613 0.9722 0.9848 0.0163 0.0387

0.9 0.9715 0.9861 0.9565 0.9711 0.9848 0.0135 0.0435

The result now provides evidence that even though the obtained FNR (3.65% for QCNN
and 3.77% for QMLP) and FPR (1.9% for QCNN and 1.82% for QMLP) are not high for the
base quantized models with default threshold, they can be further optimized using the thresh-
olding technique. It is important to notice that decreasing the number of FPs by changing
the threshold leads to increasing the number of FNs, and vice versa.

3.1.6 Data Refinement

This section describes the effect of different data refinement methods on NN model perfor-
mance. To ensure the effectiveness of chosen techniques, exhaustive testing was carried out.
This testing covered various scenarios and conditions to determine the applicability of each
technique in different situations.

3.1.6.1 Feature Selection

1. Keep energies above the threshold.

Applying this method, the number of non-zero values in each dataset sample sig-
nificantly drops, as can be seen in Figure 3.10. After analyzing the entire training
dataset before preprocessing, consisting of full-precision values, it was found that only
11.39% of the values were non-zero. By increasing the threshold value, the percent
of non-zero values decreases: for threshold value 0.1 GeV to 6.18%, for 0.5 GeV to
1.73%, for 1 GeV to 1,05%, and finally for threshold value 2 GeV to 0.62%. As shown
in Table 3.10, as the threshold value increases, there is a slight drop in accuracy and

77

Chapter 3. RESULTS AND DISCUSSION

an increase in FNR value. For threshold value of 2, accuracy drops significantly and
therefore, forthcoming tests are not carried out for threshold values higher than 2.

(a) Before applying the threshold value of 0.1. (b) After applying the threshold value of 0.1.

Figure 3.10. Comparison of generated 3D HGCAL image before and after applied
threshold.

Table 3.10. The QCNN and QMLP results with different thresholds applied on energie/pixel
values.

Threshold (GeV) Acc Prec Rec F1 AUC FPR FNR

Q
C

N
N

no thres. 0.9722 0.9807 0.9635 0.9720 0.9856 0.0190 0.0365
0.1 0.9719 0.9856 0.9577 0.9715 0.9866 0.0140 0.0423

0.5 0.9699 0.9789 0.9605 0.9696 0.9837 0.0208 0.0395

1 0.9633 0.9635 0.9630 0.9632 0.9820 0.0365 0.0370

2 0.9511 0.9850 0.9163 0.9494 0.9602 0.0140 0.0838

Q
M

L
P

no thres. 0.9720 0.9814 0.9623 0.9717 0.9848 0.0182 0.0377

0.1 0.9701 0.9786 0.9613 0.9699 0.9798 0.0210 0.0387

0.5 0.9660 0.9667 0.9653 0.9660 0.9851 0.0333 0.0348
1 0.9639 0.9727 0.9545 0.9635 0.9813 0.0267 0.0455

2 0.9497 0.9759 0.9223 0.9483 0.9615 0.0227 0.0777

2. Keep maximum layer energy (single sample per layer).

The effect of keeping layer maximum value on HGCAL image can be seen in Fig-
ure 3.11.

78

Chapter 3. RESULTS AND DISCUSSION

(a) Before applying the highest in layer
approach.

(b) After applying the highest in layer
approach.

Figure 3.11. Comparison of generated 3D HGCAL image before and after applied highest
in layer approach.

The models that keep only one value per image layer show no significant decrease in
classification accuracy compared to the base quantized versions, according to results
shown in Table 3.11

Table 3.11. The results for the keep layer maximum approach for QCNN and QMLP.

Model Acc Prec Rec F1 AUC FPR FNR

Q
C

N
N base 0.9722 0.9807 0.9635 0.9720 0.9856 0.0190 0.0365

layer max. 0.9689 0.9718 0.9657 0.9688 0.9847 0.0280 0.0343

Q
M

L
P base 0.9720 0.9814 0.9623 0.9717 0.9848 0.0182 0.0377

layer max. 0.9675 0.9761 0.9585 0.9672 0.9827 0.0235 0.0415

3. Capping.

Data capping is applied by using values (2, 4, 8, 16). For QMLP, there is no notable
difference in metrics, but for QCNN, there is an improvement in FNR for all capping
values, no matter which capping value is chosen (Table 3.12).

Due to resource constraints, hardware implementations, including FPGAs, typically
use fixed-point arithmetic rather than floating-point arithmetic. By limiting the range
of input data values, the fixed-point representation can accurately represent all possi-
ble input values without loss of precision. Therefore, NN models with applied data
capping will be chosen for FPGAs implementation. The impact of the applied capping
value on the model’s accuracy and FPR, shown in Figure 3.12, manifests an anomaly

79

Chapter 3. RESULTS AND DISCUSSION

Table 3.12. The results for the QCNN and QMLP for different capping values.

c_value (GeV) Acc Prec Rec F1 AUC FPR FNR
Q

C
N

N

(base) 0.9722 0.9807 0.9635 0.9720 0.9856 0.0190 0.0365

2 0.9729 0.9739 0.9718 0.9728 0.9864 0.0260 0.0283
4 0.9726 0.9758 0.9692 0.9725 0.9871 0.0240 0.0307

8 0.9706 0.9743 0.9667 0.9705 0.9850 0.0255 0.0333

16 0.9728 0.9804 0.9647 0.9725 0.9867 0.0192 0.0352

Q
M

L
P

(base) 0.9720 0.9814 0.9623 0.9717 0.9848 0.0182 0.0377

2 0.9715 0.9720 0.9710 0.9715 0.9822 0.0280 0.0290
4 0.9584 0.9878 0.9283 0.9571 0.9835 0.0115 0.0717

8 0.9716 0.9809 0.9620 0.9713 0.9801 0.0187 0.0380

16 0.9711 0.9796 0.9623 0.9709 0.9842 0.0200 0.0377

in the case of capping value 4. There is a significant drop in accuracy and an increase
in FNR value, which was not noticed when tests were performed with the dataset con-
taining fewer samples.

(a) Model accuracy as a function of capping
value.

(b) Model FNR as a function of capping value.

Figure 3.12. Model accuracy and FNR as a function of capping value.

4. Reduction in longitudinal profile.

This approach is applied only when QCNN is used as a classifier. The HGCAL image
contains 5 × 5 × 35 = 875 pixels per image, resulting in 2753 parameters for QCNN
(respectively 7153 for QMLP). Following the procedures described in Section 4, an
attempt is made to reduce the number of model parameters. The proposed solutions
have been analyzed, and the outcomes are presented in Table 3.13.

• The QCNN model using a full HGCAL image has 2753 parameters, and with
this approach (E+Hf), the number of parameters is reduced to 1673. Despite the

80

Chapter 3. RESULTS AND DISCUSSION

Table 3.13. The results for the QCNN applied after reduction of the longitudinal profile.

model Acc Prec Rec F1 AUC FPR FNR Param #
base 0.9722 0.9807 0.9635 0.9720 0.9856 0.0190 0.0365 2753

E+Hf 0.9710 0.9705 0.9715 0.9710 0.9854 0.0295 0.0285 1673

3Ef+Hf 0.9692 0.9796 0.9585 0.9689 0.9876 0.0200 0.0415 1079

Ef+Hf 0.9570 0.9505 0.9643 0.9573 0.9808 0.0503 0.0357 971

fact that the model based on the reduced image uses just ∼60.77% of a complete
number of parameters working with a complete HGCAL image, it is still effective
in producing accurate results.

• The approach 3Ef+Hf replaces the full HGCAL image (5 × 5 × 35) with a 5 × 5
× 4 image, decreasing the NN parameter numbers to 1079. In this scenario, the
reduced model uses ∼39.19% of a complete number of parameters. The accuracy
is slightly decreased, but there is a notable decrease in FNR.

• This selection method, named Ef+Hf, is based on two 5×5 image, and uses 971
parameters(∼ 35.27%). A more serious drop in accuracy can be noticed, while
FNR is slightly better than in the 3Ef+Hf case.

3.1.6.2 Quantization

In this section, different data quantization approaches are presented.

1. Selection bit(s).

It is clear that the selection bit method would drastically reduce the amount of data
needed for acceptance/rejection decisions, using one bit for each pixel presentation
instead of floating point format. The drawback is poor accuracy, especially for QMLP,
and a significant increase in FPR for both models, as could be seen in Table 3.14.

Table 3.14. The results of the selection bit method for the QCNN and QMLP.

Model Acc Prec Rec F1 AUC FPR FNR

Q
C

N
N base 0.9722 0.9807 0.9635 0.9720 0.9856 0.0190 0.0365

select. bit 0.9429 0.9562 0.9283 0.9420 0.9669 0.0425 0.0717

Q
M

L
P base 0.9720 0.9814 0.9623 0.9717 0.9848 0.0182 0.0377

select. bit 0.9285 0.9180 0.9410 0.9294 0.9662 0.0840 0.0590

However, acceptable results are achieved when data thresholding is applied prior selec-
tion bit. According to performance metrics shown in Table 3.15, increasing the thresh-
old value leads to improvement in accuracy. A scenario with a threshold value of 0.5

81

Chapter 3. RESULTS AND DISCUSSION

followed by the selection bits method for QCNN gives results comparable with those
achieved with complete full precision data. For threshold value 1, QCNN achieves
slightly better accuracy, but FNR is decreased, while QMLP behaves very similarly
for threshold values 0.5 and 1.

Table 3.15. The results of the selection bit method applied after thresholding for the QCNN
and QMLP.

Threshold (GeV) Acc Prec Rec F1 AUC FPR FNR

Q
C

N
N

/ (base) 0.9722 0.9807 0.9635 0.9720 0.9856 0.0190 0.0365

0.1 0.9577 0.9633 0.9517 0.9575 0.9794 0.0362 0.0483

0.5 0.9667 0.9696 0.9637 0.9666 0.9834 0.0302 0.0362
1 0.9686 0.9813 0.9555 0.9682 0.9781 0.0182 0.0445

Q
M

L
P

/ (base) 0.9720 0.9814 0.9623 0.9717 0.9848 0.0182 0.0377

0.1 0.9495 0.9636 0.9343 0.9487 0.9738 0.0352 0.0658

0.5 0.9653 0.9839 0.9460 0.9646 0.9819 0.0155 0.0540

1 0.9657 0.9839 0.9470 0.9651 0.9807 0.0155 0.0530

The comparison in Figure 3.13 demonstrates the difference between the full HGCAL
image and an image where each pixel is described using 1-bit.

(a) Before applying the selection bit approach
preceded by thresholding 0.1.

(b) After applying the selection bit approach
preceded by thresholding 0.1.

Figure 3.13. Comparison of generated 3D HGCAL image before and after applied selection
bit approach.

2. Uniform quantizer.

Before applying uniform quantization to HGCAL images, it is important to perform a
mandatory step - capping. In the (uniform) quantization process, a continuous range

82

Chapter 3. RESULTS AND DISCUSSION

of input values is mapped to a finite number of output values. In the scenario when the
input range is too wide, the low values will be lost, becoming zero after applied quanti-
zation. By capping the range of input values, the quantization process is more effective
in preserving the details of the original image. The impact of the applied capping value
on the different levels of quantization is shown in Table 3.16 and Table 3.17. For both
models, the AUC value does not vary a lot, regardless of the combination of capping
and bit-width values. However, for capping values 8 and 16, accuracy decreases while
the FNR value grows. From the results, it is clear that models with 2 and 3 input data
bit width outperform models with wider data precision.

Fig 3.14 shows model accuracies and FNR depending on the capping value applied
before uniform quantization.

Table 3.16. Uniform quantizer with different capping values for various quantization levels,
for the QCNN.

Bit width Cap Acc Prec Rec F1 AUC FPR FNR
(base) / 0.9722 0.9807 0.9635 0.9720 0.9856 0.0190 0.0365

2 2 0.9701 0.9736 0.9665 0.9700 0.9832 0.0262 0.0335

3 2 0.9666 0.9656 0.9677 0.9667 0.9853 0.0345 0.0323
4 2 0.9705 0.9765 0.9643 0.9703 0.9877 0.0232 0.0357

8 2 0.9403 0.9431 0.9370 0.9401 0.9715 0.0565 0.0630

2 4 0.9679 0.9761 0.9593 0.9676 0.9830 0.0235 0.0408

3 4 0.9724 0.9790 0.9655 0.9722 0.9880 0.0208 0.0345

4 4 0.9714 0.9777 0.9647 0.9712 0.9878 0.0220 0.0352

8 4 0.9454 0.9694 0.9197 0.9439 0.9727 0.0290 0.0803

2 8 0.9616 0.9827 0.9397 0.9608 0.9734 0.0165 0.0602

3 8 0.9685 0.9728 0.9640 0.9684 0.9861 0.0270 0.0360

4 8 0.9698 0.9776 0.9615 0.9695 0.9883 0.0220 0.0385

8 8 0.9509 0.9562 0.9450 0.9506 0.9768 0.0432 0.0550

2 16 0.9407 0.9903 0.8902 0.9376 0.9448 0.0088 0.1098

3 16 0.9667 0.9819 0.9510 0.9662 0.9767 0.0175 0.0490

4 16 0.9688 0.9730 0.9643 0.9686 0.9883 0.0267 0.0357

8 16 0.9616 0.9693 0.9535 0.9613 0.9833 0.0302 0.0465

Based on the results shown in Fig 3.6, both QCNN and QMLP achieve better accuracy
and FNR for a lower number of chosen bit widths (2-4) for data quantization. The
capping values 2 and 4 provide better results compared to 8 and 16. These unexpected
results could potentially be explained as the outcome of the reduced precision acting
as a form of regularization. Therefore, 2 is chosen as the capping value for QCNN and
4 for QMLP whenever uniform quantization is used.

83

Chapter 3. RESULTS AND DISCUSSION

Table 3.17. Uniform quantizer with different capping values for various quantization levels,
for the QMLP.

Bit width Cap Acc Prec Rec F1 AUC FPR FNR
(base) / 0.9720 0.9814 0.9623 0.9717 0.9848 0.0182 0.0377

2 2 0.9684 0.9759 0.9605 0.9681 0.9781 0.0238 0.0395

3 2 0.9619 0.9652 0.9583 0.9617 0.9840 0.0345 0.0418

4 2 0.9605 0.9663 0.9543 0.9603 0.9838 0.0333 0.0457

8 2 0.9395 0.9478 0.9303 0.9389 0.9677 0.0512 0.0698

2 4 0.9601 0.9499 0.9715 0.9606 0.9844 0.0512 0.0285
3 4 0.9649 0.9728 0.9565 0.9646 0.9868 0.0267 0.0435

4 4 0.9627 0.9758 0.9490 0.9622 0.9857 0.0235 0.0510

8 4 0.9439 0.9411 0.9470 0.9440 0.9703 0.0592 0.0530

2 8 0.9615 0.9800 0.9423 0.9607 0.9751 0.0192 0.0578

3 8 0.9665 0.9630 0.9702 0.9666 0.9874 0.0372 0.0297

4 8 0.9686 0.9711 0.9660 0.9685 0.9887 0.0288 0.0340

8 8 0.9505 0.9597 0.9405 0.9500 0.9726 0.0395 0.0595

2 16 0.9340 0.9974 0.8702 0.9295 0.9461 0.0022 0.1298

3 16 0.9639 0.9798 0.9473 0.9633 0.9813 0.0195 0.0527

4 16 0.9681 0.9708 0.9653 0.9680 0.9875 0.0290 0.0348

8 16 0.9559 0.9667 0.9443 0.9554 0.9800 0.0325 0.0558

Figure 3.14. Model accuracy and FNR as a function of data bit width and capping value.

A comparison of the full HGCAL image and image with a 4-bit uniformly quantized
data can be seen in Figure 3.15.

3. Non-uniform quantizer. Observation of the difference between a full HGCAL image

84

Chapter 3. RESULTS AND DISCUSSION

(a) Before 4-bit uniform quantization. (b) After 4-bit uniform quantization.

Figure 3.15. Comparison of generated 3D HGCAL image before and after applied uniform
quantization.

and an image with non-uniformly quantized data is shown in Figure 3.16.

(a) Before non-uniform quantization. (b) After non-uniform quantization.

Figure 3.16. Comparison of generated 3D HGCAL image before and after applied
non-uniform quantization.

The models based on non-uniformly quantized data with results in Table 3.18 show
results similar to scenarios with uniformly quantized input. It is important to note that
in the case of non-uniform quantization, the maximum number of bits is not prede-
termined. For QCNN, the results are comparable to 3-bit uniform quantization with
a capping value of 8, and in the case of QMLP, results are comparable with those
achieved with 3-bit quantization and a capping value of 8.

85

Chapter 3. RESULTS AND DISCUSSION

Table 3.18. The results of nonuniform quantizer.

Model Acc Prec Rec F1 AUC FPR FNR
Q

C
N

N base 0.9722 0.9807 0.9635 0.9720 0.9856 0.0190 0.0365

nonuni. quant. 0.9686 0.9723 0.9647 0.9685 0.9859 0.0275 0.0352

Q
M

L
P base 0.9720 0.9814 0.9623 0.9717 0.9848 0.0182 0.0377

nonuni. quant. 0.9676 0.9739 0.9610 0.9674 0.9810 0.0257 0.0390

In this chapter, various data reduction methods based on selection and quantization are
explored, and their effects on the accuracy of the algorithms are examined. The results
showed that some of the individual methods, for example, capping and uniform quantiza-
tion, achieve accuracy comparable to the accuracy obtained when the algorithms use the
entire data with full precision. On the other hand, most longitudinal profile reduction meth-
ods (except E+Hf) and non-uniform quantization resulted in decreased accuracy, while the
thresholding and selection-bit approach suffer from increased FNR. These findings provide
insight into the potential advantages and limitations of applying different data reduction tech-
niques in L1T algorithms. For a more detailed analysis and implementation in selected hard-
ware, it is desirable to choose methods whose processing would be the fastest, with minimal
resource consumption, in order to meet set hardware and latency requirements. Some combi-
nations of uniform quantization with capping maintained high accuracy and reduced memory
consumption, making it the most suitable method for further experiments due to its balance
of performance and efficiency.

3.2 Multiclass Classification

In this chapter, an NN model to distinguish between four different categories (EM showers,
PU, QCD jets, and pion samples) of particle showers resulting from proton-proton collisions
are considered. The overview of the class distribution in the dataset given in Figure 2.19,
helps to understand the balance or imbalance of class representation. This information is
crucial for understanding the performance of classification models and guiding decision-
making processes during model training and evaluation. According to Figure 2.19 in the
experiment, there is a lack of pion samples. As a result, this class may be harder to pre-
dict accurately compared to the other classes (although, in real-life detector analysis, the
EM showers will be the class overwhelmed with different kinds of uninteresting decay prod-
ucts). Imbalanced classes pose a significant challenge to achieving accurate results in ML
as they cause different difficulties. One of the main issues is that most standard ML algo-
rithms, including NNs, operate by trying to maximize classification accuracy. This can lead
to misleading information about the classifier’s performance, as it may appear to perform

86

Chapter 3. RESULTS AND DISCUSSION

well based on overall accuracy but actually perform poorly on the minority class. Studies on
class imbalance classification have gained more emphasis in recent years as many real-world
applications suffer from these phenomena [189–193].

3.2.1 Base four-class Classification

In order to achieve the best possible performance of the models, as it is done in binary
classification cases, the hyperparameter optimization software framework Optuna [175] is
used. The CNN model search space is defined by a range of 8 to 32 kernels for the 1-2
Conv2D layers and 8 to 32 nodes for the subsequent 1 to 3 dense layers. On the other
hand, the MLP model search space involves 2 to 6 layers with 8 to 32 nodes each. Both
models use ReLu and sigmoid as the suggested activation functions for intermediate layers,
with Softmax being used for the activation function in the output layer. Additionally, the
search space consists of three optimizers - Adam, RMSprop, and SGD, each with a variety
of learning rates to choose from. When multiple architectures have similar accuracies, the
one with the fewest trainable parameters is chosen.

In the case of CNN, the best results are achieved for the model with two convolutional
layers with 30 and 17 kernels, followed by two dense layers with 26 nodes each. For MLP,
Optuna suggests a five-layer model with a number of nodes as follows: 22, 8, 32, 24, and 22.
Optimizer Adam is selected in both cases as the most favorable optimizer, with a learning
rate value of 0.0083293 for CNN and 0.00719526 for MLP. Architectures of the developed
multiclass classifiers are presented in Figure 3.17 and 3.18.

Figure 3.17. ASCII diagrams showing architecture and parameters of CNN for multiclass
classification scenario.

According to the metrics presented in Table 3.19, it can be observed that both models
have achieved a considerably low accuracy of around 74%. Further analysis is required to
identify the potential factors affecting the performance of the models and to improve their
accuracy. The confusion matrix displayed in Figure 3.19 reveals that both models exhibit

87

Chapter 3. RESULTS AND DISCUSSION

Figure 3.18. ASCII diagrams showing architecture and parameters of MLP for multiclass
classification scenario.

significant difficulty in accurately classifying QCD jets and PUs. Specifically, the models
tend to misclassify QCD jets as PU and, opposite, misclassify PU as QCD.

Table 3.19. The results of four-class CNN and MLP classification.

Precision Recall F1-score

C
N

N

PU 0.5949 0.7475 0.6625

EM 0.9489 0.9600 0.9544

QCD 0.6314 0.5425 0.5836

PION 0.9034 0.6730 0.7713

Accuracy 0.7390

Macro avg 0.7696 0.7308 0.7430

Weighted avg 0.7505 0.7390 0.7389

M
L

P

PU 0.5935 0.7380 0.6579

EM 0.9554 0.9535 0.9545

QCD 0.6247 0.5573 0.5891

PION 0.9011 0.6605 0.7623

Accuracy 0.7369

Macro avg 0.7687 0.7273 0.7409

Weighted avg 0.7498 0.7369 0.7379

Based on Figure 3.20, it is evident that there are only minor differences in the longitudinal
profiles of the two classes, PU and QCD. These findings are of great importance, especially
considering the fact that the longitudinal profile is a critical feature used in NN models. It
suggests that these two classes cannot be distinguished without using additional features.

88

Chapter 3. RESULTS AND DISCUSSION

(a) For CNN (b) For MLP

Figure 3.19. Confusion matrix for four-class classification.

Figure 3.20. Average distribution of pt across HGCAL layers for EM, PU, QCD, and pions
showers.

3.2.2 Four-class Classification with Additional Features

Given that PU/QCD misclassifications occur frequently, this indicates the need for model
refinement to improve accuracy in distinguishing between jet types. As models are already
optimized and the features used are actually HGCAL energy deposits, additional features
have been created based on them. Several methods have been tried in order to achieve better
performance, but only one significantly improved accuracy. The main idea is to compare the
average longitudinal profile of each particle with the profile of every shower sample. That
way, four new values are added to each shower sample, indicating the measure of similarity
with each of the considered particles. By adding new features, the input data can no longer
be viewed as an image. Therefore, in the CNN model, the convolutional layers will process
an HGCAL image, and the additional features will be added immediately after flattening,

89

Chapter 3. RESULTS AND DISCUSSION

before a dense layer. Two different measures of similarity are calculated:

• The Chi-Square Test

The chi-square test is a statistical technique used to measure the goodness of fit be-
tween observed and expected frequency distributions [194], calculated by

χ
2 =

n

∑
i=1

(Oi −Ei)
2

Ei
(3.1)

where Oi is the observed frequency in bin i, Ei is the expected frequency in the same
bin i, and n is the number of bins. It is commonly used to compare two histograms
and quantify the degree of similarity between them. If the chi-square statistic is low, it
indicates a high level of similarity between the histograms. On the other hand, if the
chi-square statistic is high, it suggests a significant difference in distribution. In ML,
the chi-square test is an often-used method of feature selection (conditionally speak-
ing, it is a dimensionality reduction method) [195], although here it is used to create
additional features. The classification report for the previously created MLP model,
now trained with additional features, is shown in Table 3.20 with the corresponding
confusion matrix in Figure 3.21.

Table 3.20. The results of four-class CNN and MLP classification, with additional
Chi-square-based calculated features.

Precision Recall F1-score

C
N

N

PU 0.9865 0.1465 0.2551

EM 1.0000 1.0000 1.0000

QCD 0.5389 0.9980 0.6999

PION 1.0000 0.9990 0.9995

Accuracy 0.7554

Macro avg 0.8814 0.7859 0.7386

Weighted avg 0.8644 0.7554 0.7013

M
L

P

PU 0.8916 0.5673 0.6934

EM 0.9975 0.9988 0.9981

QCD 0.6800 0.9307 0.7859

PION 0.9944 0.9820 0.9882

Accuracy 0.8536

Macro avg 0.8909 0.8697 0.8664

Weighted avg 0.8761 0.8536 0.8490

According to results presented in Table 3.20 and Figure 3.21, there is an improvement
in accuracy in more than 10% for MLP model. The ability to distinguish between

90

Chapter 3. RESULTS AND DISCUSSION

(a) For CNN (b) For MLP

Figure 3.21. Confusion matrix for four-class classification, with additional
Chi-square-based calculated features.

PU and QCD jets has significantly improved. In the case of CNN, EM showers and
PIONs are classified without errors, but most PUs are recognized as QCD. The reason
is the high similarity between average PU and QCD longitudinal profile, which is
more strongly emphasized when additional features are added later when the number
of parameters is significantly smaller.

• Chebyshev distance

Chebyshev distance [196] is also known as maximum value distance or L∞ distance.
The Chebyshev distance formula calculates the distance between two vectors p and q

by finding the greatest difference between their corresponding components along any
coordinate dimension:

d (p,q) = max
i
(
∣∣∣pi −qi

∣∣∣). (3.2)

In addition to being used to determine the similarity between objects, it is also a useful
metric for identifying outliers [197] and for data clustering [198, 199]. The classifi-
cation report for the CNN and MLP models, with additional features calculated using
this approach, shown in Table 3.21 with the corresponding confusion matrix in Fig-
ure 3.22 reveals an even higher improvement of accuracy, with F1− score over 93%
in all cases. Comparing with Chi-square-based results given in Table 3.20, it is clear
that models in this case do not have problems recognizing QCD jets.

The results suggest that using both chi-square test and Chebyshev distance features improves
the model’s performance as compared to the baseline model. However, when the MLP model
is trained using Chebyshev distance features, it exhibits significantly better results, ∼9%
(CNN), and ∼96% (MLP), while chi-square model accuracy is ∼75% (CNN) and ∼85%
(MLP). This is because the Chebyshev distance is more robust in capturing distributional
differences, which allows the NN model to identify subtle variations between histograms,

91

Chapter 3. RESULTS AND DISCUSSION

Table 3.21. The results of four-class CNN and MLP classification, with additional
Chebyshev-distance-based calculated features.

Precision Recall F1-score

C
N

N

PU 0.9573 0.9483 0.9528

EM 0.9998 1.0000 0.9999

QCD 0.9471 0.9570 0.9520

PION 0.9980 0.9955 0.9967

Accuracy 0.9723

Macro avg 0.9755 0.9752 0.9753

Weighted avg 0.9723 0.9723 0.9723

M
L

P

PU 0.9363 0.9340 0.9352

EM 0.9978 0.9992 0.9985

QCD 0.9288 0.9360 0.9324

PION 0.9929 0.9795 0.9862

Accuracy 0.9597

Macro avg 0.9640 0.9622 0.9631

Weighted avg 0.9598 0.9597 0.9598

(a) For CNN (b) For MLP

Figure 3.22. Confusion matrix for four-class classification, with additional
Chebyshev-distance-based calculated features.

leading to more precise predictions.
These findings underscore the efficacy of integrating histogram comparison features, par-

ticularly those derived from Chebyshev distance, into NN models for enhanced performance.
By using these additional features, the NN model achieves superior classification accuracy
and robustness, highlighting the importance of feature engineering in ML applications.

Additional tests are conducted with a quantized version of MLP using a dataset extended
with the Chebyshev distance-based feature. 2-bit aggressive quantization is applied to the

92

Chapter 3. RESULTS AND DISCUSSION

MLP weights, biases, and activation functions, resulting in a significant drop in accuracy
(F1− score is ∼82%). If 4-bit quantization of the model is applied, the results are compara-
ble to those obtained with the model in full precision (F1− score is ∼95%).

3.2.3 Joined PU/QCD Background Approach (three-class Classifica-
tion)

As neither PU nor QCD are among the particles of interest, they could be regarded as a
single, mixed background for the next phase of the experiment. According to Figure 3.23, it
can be observed that the distribution of classes in this case is even more unbalanced. Optuna

Figure 3.23. The distribution of sample numbers according to class, with PU and QCD
joined in MIX background.

is launched on the same search space as before (Section 3.2.1) to determine the optimal CNN
and MLP model configuration for a new dataset. The optimization results reveal that, for a
three-class classification, both models will have a significant reduction in complexity. CNN
model consists of a single convolutional layer with 17 kernels, followed by one dense layer
with 28 nodes, as presented in Figure 3.24. Based on Optuna’s recommendations, an MLP
model contains three layers. The suggested number of nodes for each layer is 9, 32, and 21,
respectively, as shown in Figure 3.25.

Classification reports providing detailed insights into the model’s performance are gen-
erated after conducting tests on the developed models. These reports are presented in Ta-
ble 3.22 with the corresponding confusion matrix in Figure 3.26.

Despite achieving better results than the baseline models, the performance of both NN
models trained on the mixed background dataset is inferior to that of the models with inte-
grated histogram comparison features, particularly those derived from Chebyshev distance.
This indicates that integrating histogram comparison features offers valuable information for
classification, resulting in improved model performance.

93

Chapter 3. RESULTS AND DISCUSSION

Figure 3.24. ASCII diagrams showing architecture and parameters of CNN for joined
multiclass classification scenario.

Figure 3.25. ASCII diagrams showing architecture and parameters of MLP for joined
multiclass classification scenario.

Table 3.22. The results of three-class CNN and MLP classification.

Precision Recall F1-score

C
N

N

MIX 0.9115 0.9732 0.9414

EM 0.9603 0.9560 0.9582

PION 0.9011 0.6650 0.7652

Accuracy 0.9243

Macro avg 0.9243 0.8647 0.8883

Weighted avg 0.9240 0.9243 0.9210

M
L

P

MIX 0.9106 0.9629 0.9360

EM 0.9500 0.9537 0.9518

PION 0.8584 0.6545 0.7427

Accuracy 0.9162

Macro avg 0.9063 0.8570 0.8769

Weighted avg 0.9144 0.9162 0.9129

94

Chapter 3. RESULTS AND DISCUSSION

(a) For CNN (b) For MLP

Figure 3.26. Confusion matrix for three-class classification.

Therefore, supplementary tests with integrated additional features are performed for
three-classes classification and binary classification problem EM vs. MIX. In this scenario,
only a comparison with the average EM profile is utilized as an additional feature, resulting
in a 98% accuracy in three-class classification, and even over 99% in EM vs. MIX binary
classification problem.

3.3 Alternative images

The base NN classification models presented in Section 3.1.1 are tested with new datasets.
First, results are given for the Consecutive Layers Approach.

After carefully comparing the classification metrics in Table 3.1 and Table 3.23, it is
evident that in the EM vs. PU classification, the CNN model trained on the alternative dataset
achieves results that are comparable to the model trained on the base dataset. However, the
MLP results are slightly inferior in comparison. Furthermore, upon analyzing Table 3.1 and
Table 3.23, as well as Table 3.2 and Table 3.24, one can come to the same conclusion for EM
vs QCD and EM vs MIX background classification tasks. More specifically, the CNN model
trained on the alternative dataset outperforms the model trained on the base dataset in EM vs.
QCD classification, with a slightly better false negative rate. This observation suggests that
the alternative dataset can be a more effective and efficient option for training CNN models
for EM vs. QCD classification tasks. On the other hand, quantized versions of alternative
models, as shown in Table 3.25, achieve slightly worse performance then quantized based
versions.

Although the results of our alternative HGCAL image-trained models did not outperform
those trained on traditionally created images, our findings indicate that it is crucial to inves-
tigate ways of improving the quality of HGCAL images in order to enhance classification
accuracy.

95

Chapter 3. RESULTS AND DISCUSSION

Table 3.23. The results for the base CNN and MLP model for EM vs. different backgrounds
(PU or QCD).

Model Acc Prec Rec F1 AUC FPR FNR Param #

PU

CNN 0.9725 0.9881 0.9718 0.9798 0.9912 0.0259 0.0283 4702

MLP 0.9665 0.9842 0.9667 0.9754 0.9845 0.0341 0.0333 4486

Q
C

D CNN 0.9622 0.9683 0.9607 0.9645 0.9881 0.0361 0.0393 4904

MLP 0.9512 0.9460 0.9635 0.9547 0.9828 0.0629 0.0365 3611

Table 3.24. The results for the base CNN and MLP model for EM vs. MIX.

Model Acc Prec Rec F1 AUC FPR FNR Param #
CNN 0.9665 0.9673 0.9673 0.9673 0.9854 0.0343 0.0328 2753

MLP 0.9608 0.9650 0.9583 0.9616 0.9854 0.0364 0.0418 7153

Table 3.25. The results for the QCNN and QMLP model for EM vs. MIX.

Model Acc Prec Rec F1 AUC FPR FNR Param #
QCNN 0.9614 0.9741 0.9497 0.9618 0.9794 0.0265 0.0503 2753

QMLP 0.9594 0.9644 0.9560 0.9602 0.9805 0.0370 0.0440 7153

The same tests are conducted with a Principal Component Analysis Approach dataset.
Upon detailed examination of the classification metrics in Table 3.1, Table 3.23, and Ta-
ble 3.26, it is evident that the PCA approach does not outperform either the model trained on
the base dataset or the consecutive layers based model. Furthermore, comparing Table 3.2,
Table 3.24, and Table 3.27, specifically the EM vs MIX background classification task, it
can be assumed that the PCA-based model slightly outperforms the model trained on the
consecutive layers-based dataset, but not the base model. The same conclusion is applicable
to quantized versions of models (by comparing Table 3.5, Table 3.25, and Table 3.28), with
the quantized version of the PCA based approach having the lowest FNR.

Table 3.26. The results for the base CNN and MLP model for EM vs. different backgrounds
(PU or QCD).

Model Acc Prec Rec F1 AUC FPR FNR Param #

PU

CNN 0.9717 0.9881 0.9730 0.9805 0.9891 0.0320 0.0270 4702

MLP 0.9634 0.9808 0.9690 0.9748 0.9851 0.0518 0.0310 4486

Q
C

D CNN 0.9610 0.9757 0.9630 0.9693 0.9889 0.0424 0.0370 4904

MLP 0.9590 0.9706 0.9650 0.9678 0.9835 0.0517 0.0350 3611

It is important to note that tests were conducted using a smaller number of generated
images for both alternative approaches. As no improvements were observed, further tests

96

Chapter 3. RESULTS AND DISCUSSION

Table 3.27. The results for the base CNN and MLP model for EM vs. MIX.

Model Acc Prec Rec F1 AUC FPR FNR Param #
CNN 0.9667 0.9718 0.9657 0.9688 0.9883 0.0323 0.0343 2753

MLP 0.9641 0.9693 0.9635 0.9664 0.9841 0.0352 0.0365 7153

Table 3.28. The results for the QCNN and QMLP model for EM vs. MIX.

Model Acc Prec Rec F1 AUC FPR FNR Param #
QCNN 0.9689 0.9772 0.9645 0.9708 0.9855 0.0260 0.0355 2753

QMLP 0.9614 0.9694 0.9583 0.9638 0.9820 0.0349 0.0418 7153

were not carried out.
The current quality of HGCAL images may be a factor that limits the performance of

models trained on them. Therefore, to enhance L1T functionality, we recommend further
research to identify techniques that can be used to improve the quality of HGCAL images,
which could lead to more accurate classification results in the future.

3.4 FPGA Implementation

In previous sections, a comprehensive set of tests using different types of data refinement
techniques used for CNN and MLP models was presented. Based on the result of the exami-
nation of their performance, the current focus is on choosing a subset of the most successful
models to be deployed on a dedicated L1T device, FPGA Xilinx Virtex UltraScale, part
number xcvu13p-fhgb2104-2-e using hls4ml.

3.4.1 FPGA - Basic Concepts

FPGAs are a type of integrated circuits that provide programmers the ability to define and
configure digital logic functions within the chip itself according to their specific use case
requirements. This makes them extremely flexible and applicable to different applications,
such as digital signal processing, machine learning, and many others.

FPGAs contain different building blocks (Figure 3.27) that are connected together based
on the specific requirements [28]:

• Logic cells and LUTs, are used to perform arbitrary functions on small bit-width in-
puts. They can be used for boolean operations, arithmetic, and small memories.

• Flip-Flops (FFs), used to register data in time with the clock pulse.

• Digital Signal Processors (DSPs) are specialized units for multiplication and arith-
metic. Compared with LUTs, they are more efficient for these types of operations. In

97

Chapter 3. RESULTS AND DISCUSSION

Figure 3.27. Diagram showing main FPGA building blocks [28].

NN implementation, DSPs are often limiting resource. It is important to keep in mind
that the number of DSPs needed to perform the multiplication depends on the data pre-
cision used, so it is possible to influence the required number of DSPs by configuring
the precision.

• BRAMs, small and fast memories (RAMs, ROMs, FIFOs). Memories using BRAMs
are generally considered more efficient than using LUTs.

In addition, FPGAs use specialized blocks for I/O, which makes them popular in embedded
systems and HEP triggers.

3.4.2 hls4ml

The L1T algorithms, including those suggested in this thesis, should be designed to run on
FPGA devices. However, FPGAs are usually programmed using Hardware Description Lan-
guages (HDLs) such as VHSIC Hardware Description Language (VHDL) or Verilog (usu-
ally used for FPGAs), making it difficult to develop ML models. Therefore, scientists have
developed HLS, a technology that takes high-level code in languages like C and C++ and au-
tomatically synthesizes it into RTL (Register Transfer Level) descriptions written in HDLs
such as Verilog or VHDL. HLS aims to make hardware design more accessible to software
engineers by raising its abstraction level. hls4ml [29, 30] is a Python library that efficiently
and quickly translates ML models to HLS code. The library was originally created to im-
plement relatively small NNs in FPGAs for the L1T, but the scope of focus has significantly
expanded since then. Figure 3.28 illustrates a typical workflow needed to develop a NN
model and implement it in FPGA. The red part of shema indicates the standard workflow re-
quired to develop an NN model for a specific purpose, usually including tools/libraries such
as Keras and PyTorch. The blue section describes the hls4ml workflow, which starts with a
model translation into an hls project that is then synthesized and implemented to run on an
FPGA.

98

Chapter 3. RESULTS AND DISCUSSION

Figure 3.28. A schema representing the typical workflow for converting a model into an
FPGA implementation using hls4ml [30].

Figure 3.29 visualize how FPGA uses resources in neural network inference: activation
function values are precomputed and stored in BRAMs, multiplication is calculated using
DSPs, while the bias values are stored in logic cells.

Figure 3.29. Visualization of FPGA building blocks tasks in NN inference [28].

The way in which algorithms are processed on FPGAs differs from their execution on
traditional CPUs. FPGAs have the capability to carry out multiple independent operations
simultaneously, allowing them to achieve processing speeds of trillions of operations per
second. This is accomplished at a low power cost compared to CPUs and GPUs. How-
ever, these operations use dedicated resources on the FPGA and cannot be changed while
running. To develop an efficient FPGA implementation, a crucial aspect is to effectively
manage the utilization of FPGA resources while simultaneously meeting the latency and
throughput objectives of the intended algorithm. Some key metrics to consider for an FPGA
implementation are:

• latency, refers to the total time required for a single iteration of the algorithm to com-
plete, measured in units of "clocks."

• initiation interval, the number of clock cycles required before the algorithm can ac-
cept a new input, is often expressed as "II" and is inversely proportional to the inference
rate or throughput.

99

Chapter 3. RESULTS AND DISCUSSION

• resource usage, it is common to express this usage in terms of several categories:
BRAMs, DSPs, FFs, and LUTs.

The hls4ml offers several configurable parameters allowing users to customize their ap-
plications’ latency and resource usage. One of the ways to save resources and reduce latency
is by decreasing precision. For example, for many applications, the limiting FPGA resource
is the number of DSPs that are primarily used for multiplication. Different precision settings
use different numbers of DSPs needed for performing multiplication. Another example is the
usage of the “reuse factor” parameter, which enables parallelization and resource reuse, de-
termining the number of times each multiplier is used to compute a layer of neuron’s values.
It is evident that a low reuse factor results in the lowest latency and the highest throughput
but consumes the most resources. On the other hand, a high reuse factor saves resources
while leading to longer latency and lower throughput.

3.4.3 Neural Network Model Selection

The primary goal of the selection is to choose the most suitable models that, in addition
to good performance metrics, offer the possibility of efficient hardware resource usage due
to their characteristics. Therefore, the selection process is performed in a way that each
subsequent model implemented in the FPGA enables a noticeable improvement in its perfor-
mance or savings in resource consumption compared to its predecessor. This can be achieved
through various techniques, such as optimizing the models by using model and/or data quan-
tization combined with capping and utilizing the hls4ml features like adjustment of precision
and reuse factor. The goal is to choose previously created models that not only meet the
performance requirements but also use resources sparingly, bearing in mind that FPGAs are
shared among a number of L1T algorithms. The process of achieving this objective involves
rigorous testing and analysis, which helps in identifying the minimum resource consumption
without impacting model accuracy.

Consequently, the models shown in Table 3.29 are selected for hls4ml implementation.
We start with a base CNN model that will provide the initial estimation of resource con-
sumption. The next one is QCNN, CNN with weights, biases, and activations quantized on 2
bits, which helps in decreasing computational resources. After that follows a model named
QCNN_U2, which, in addition to the 2-bit quantized model, also applies 2-bit quantization
to inputs, which enables additional saving of resources.

According to the hls4ml documentation, each layer in the model should have a maximum
of 4096 trainable parameters to achieve the lowest possible latency. This limitation is due
to fixed constraints in the Vivado compiler. If the model stays within this limit, the strategy
= ’latency’ can be used, which will result in lower latency compared to using strategy =
’resource’. Given the above, the MLP models using the complete HGCAL image are not
possible to implement with a ’latency’ strategy.

100

Chapter 3. RESULTS AND DISCUSSION

Table 3.29. The NN models for EM vs. MIX. classification selected for FPGA
implementation.

Model Acc Prec Rec F1 AUC FPR FNR Param #
CNN 0.9701 0.9688 0.9715 0.9702 0.9919 0.0312 0.0285 2753

QCNN 0.9722 0.9807 0.9635 0.9720 0.9856 0.0190 0.0365 2753

QCNN_U2 0.9701 0.9736 0.9665 0.9700 0.9832 0.0262 0.0335 2753

3.4.4 Implementation Results

The classification results obtained after the implementation of selected models, together with
the used precision settings, are shown in Table 3.30. In addition to standard NN (Keras)
accuracy, the hls4ml report also gives the hls accuracy of implemented models. Accuracy of
hls implementation - hls accuracy is affected not only by the original NN design but also by
the quality of the optimization settings applied during the synthesis process. hls4ml offers a
number of implementation improvement options that use different parameter settings. Some
of them used in the experiment are:

• Reuse factor: this parameter defines the number of times that each multiplexer will be
used. It is clear that in fully parallel implementation, each multiplexer is used just once,
which requires more resources. Therefore, depending on NN size, due to the limited
resources it is often not possible to run the model in fully parallel implementation. It
is also clear that the requirement for resources is inversely proportional to latency.

• Precision: precision in hls4ml refers to the numerical representation of used data; it
defines the precision of inputs, outputs, weights, and biases. It is denoted by < X ,Y >,
where Y is the number of bits representing the integer part, and X is the total number of
bits. By choosing a low precision for a model, FPGA resource usage can be reduced.
However, it can lead to decreased model performance if not selected appropriately.

Table 3.30. The Keras and hls accuracy for selected models.

Model Keras hls Extended New hls
Acc Acc precision Acc

CNN 0.970125 0.686 <28,10> 0.97

QCNN 0.97325 0.874125 <22,8> 0.973

QCNN_U2 0.970125 0.829375 <18,8> 0.969625

Considering the fact that default hls4ml precision is <16,6>, it is obvious that for all
models, it was necessary to increase the required accuracy, which results in an increase in
resource consumption. However, with the non-quantized CNN model, this increase was even

101

Chapter 3. RESULTS AND DISCUSSION

up to <28,10>, which indicates that more resources are required to maintain a higher level of
precision.

3.4.5 Estimation of FPGA Resource Usage

Table 3.31 records the FPGA implementation results for each of the selected models, esti-
mating the utilization of logic resources provided by the HLS tool after synthesis, using the
default clock period of 5 ns. In the first phase of the experiment, we evaluated the precision
of the models at the model level. This was done by ensuring that the HLS accuracy matched
or was comparable to the Keras accuracy. We did not optimize the models by adjusting the
precision at the layer level. Instead, we ensured that the overall precision was sufficient for
our purposes without worrying about optimizing resource consumption.

Table 3.31. The results of FPGA implementation for selected models model with precision
determined on model level. The table also includes the total number of DSPs, FFs, and

LUTs, allowing for a direct comparison with the utilized values.

Model Time Interval Latency DSP FF LUT
[ns] [Cycles] [µs] # (%) # (%) # (%)

12 288 3 456 000 1 728 000
CNN 4.374 34 0.170 5436 (∼44.24) 91 779 (∼2.65) 206 234 (∼11.93)

QCNN 4.350 34 0.170 2 (∼0.02) 20 573 (∼0.6) 72 358 (∼4.19)

QCNN_U2 4.357 34 0.170 2 (∼0.02) 20 187 (∼0.58) 66 940 (∼3.87)

The results shown in Table 3.31 demonstrate two important findings. First, with a la-
tency time of 0.170 µs, all models satisfy the required latency constraint (< 1µs). Secondly,
despite the fact the latency is the same, the resource usage metrics show huge differences
when comparing the results of quantized CNN with a base CNN mode. As a result of model
quantization, apart from the fact that less precision is required to achieve Keras accuracy,
the number of DSPs is rapidly reduced, from 5436 to 2. A significant reduction was also
achieved with the number of FFs, from 91 779 or 2% to ∼ 0%. LUT utilization is from
∼11% decreased to ∼ 3% for quantized models. Although the results shown do not differ
significantly if we compare the quantized models, any reduction in resource usage is signif-
icant given the large number of algorithms simultaneously executing on FPGAs. Also, the
use of quantized data enables a further reduction in precision, which is tested in the next
phase of the experiment.

The hls4ml offers profiling tools to help decide about the appropriate model precision.
The profiling tool outputs two graphs, “before optimization” and “final/after optimization,”
one for each of the weights/basis layers group and one for the activation function layers
group. The “before optimization” version of the plots describes the distributions of the origi-
nal Keras/QKeras weights/activations, while the “after optimization” plots show the distribu-

102

Chapter 3. RESULTS AND DISCUSSION

tions of the ModelGraph, which represents the internal execution graph of NN that is being
processed by hls4ml. Graph type is a box and whisker chart, a convenient way of graphi-
cal representation of the distribution of numerical data through their quartiles, and is here
applied for each layer of the implemented model. As usual, each box shows the median
and quartiles of the distribution. Additionally, the grey shaded boxes show the range, which
can be represented with the precision defined by hls4ml configuration settings. Figure 3.30a
shows “final/after optimization” graphs for the QCNN_U2 model with the precision needed
so that the achieved HLS accuracy is comparable to the Keras accuracy. It is visible that
grey-shaded boxes are much wider than whiskers, indicating the possibility of decreasing
precision for those particular layers. To demonstrate the effect of input data quantization to-
gether with the possibility of per-layer optimization, the model QCNN_U2 is implemented
in two different ways: one optimizing just the hidden layers’ precision and another that also
optimizes the input layer precision settings.

Hence, the first step is to optimize the inner layers’ precision. The hls project is rebuilt
with new configuration settings chosen carefully to decrease layer precision maintaining
accuracy. Figure 3.30b represents profiling graphs for the updated configuration. It’s worth
noting that the precision settings for each layer, in this case, fit within the gray-shaded box;
therefore, no resources are unnecessarily reserved.

(a) For model with precision optimized on
model level.

(b) For model with optimized inner layers
precision.

Figure 3.30. Activations part of “final/after optimization” graphs for QCNN_UNIQ2. The
box and whisker chart represent the distribution of the values required for the keras model,

while the grey shaded boxes show the range which can be represented with the precision
defined by hls4ml configuration settings.

In the last step, we also reduce the precision setting for the input layer. The resource
consumption results for all three versions of QCNN_U2 model implementations are given in
Table 3.32.

The results clearly show that experiments with optimized input and hidden layers over-
perform standard approaches in terms of resource usage. A QCNN model with quantized in-

103

Chapter 3. RESULTS AND DISCUSSION

Table 3.32. The resource consumption for different levels of optimizations for the
QCNN_U2 model.

Settings FF # FF % LUT # LUT %
default 20187 0.584 66940 3.874

hidden layer precision adjusted 19872 0.575 67179 3.888

input + hidden layer precision adjusted 12963 0.375 62809 3.634

puts has enabled optimization of precision in the input layer that leads to savings of 35.76%
in a number of FFs and 6.17% in the number of LUTs compared with base QCNN with
precision defined on the model level.

104

4 CONCLUSIONS AND FUTURE WORK

This thesis presents an NN model for classifying EM showers from the mixed background
made of PU and QCD jets at CMS L1T within a given time limit of a few µs. The suggested
NNs are intended to run on targeted L1T hardware, FPGAs. FPGAs are able to achieve high
speed due to a combination of factors, with parallelism and customization being the most
prominent. These factors result in highly optimized and efficient implementations that can
outperform general-purpose processors for tasks that require high speed, like data selection
in L1T. In recent times, advancements, among which are QKeras and hls4ml, have enabled
the customization of NN models to run on FPGAs.

Even if it does not represent perfectly the realistic situation, the first set of HGCAL
images was created based on simulated data containing ideal signal (EM) images without PU.
The initial tests were conducted using a dataset that included images of ideal electromagnetic
signals. The neural network classifiers, which differentiate between ideal EM showers and
PU, achieved a remarkable 99% accuracy. The next set of generated data contained an EM
shower that included PU as a signal and two different kinds of backgrounds: PU and QCD
jets, both with the same PU value of 200. Although the generated dataset is closer to a
more realistic situation, it was noticed that there is a big difference in average EM and PU
cluster pT , and somewhat smaller compared to QCD. Hence, one of the baseline methods for
comparison is cut-off, an event selection method often used in HEP for particle identification.
Additional methods for comparison include Support Vector Machine and Random Forest.
Three classification cases are considered depending on background: EM vs. PU, EM vs.
QCD, and finally EM vs. mixed background.

Throughout the research, special attention is given to the development of neural network
models that could satisfy limited L1T resource and timing conditions. By using the hyper-
parameter optimization framework Optuna, two models are developed: convolutional neural
network and multi-layer perceptron models with signal/background classification accuracy
between 96 and 98% and FNR between 2 and 4%, depending on the background case. The
achieved results could eventually be improved by adding physical features to input data, but
it would be difficult to incorporate into L1T latency requirements.

The following sections of the paper discuss the problem of EM vs. mixed background in
one-vs.-all classification. Comprehensive research is provided to develop models with as lit-
tle resource consumption as possible while preserving the achieved accuracy and satisfying

105

Chapter 4. CONCLUSIONS AND FUTURE WORK

the required latency. In-depth model analysis was also conducted to understand the potential
limitations of the models. Both NNs struggle to accurately predict outcomes in two scenar-
ios. One is for low-energy EM showers that start showering earlier, and the second is in the
case when EM hadronic deposits are higher than usual. The use of low-level features, such
as HGCAL images and energy deposits, has its limitations when dealing with these specific
scenarios. To address the limitations caused by using low-level features represented in the
form of HGCAL images, future efforts could possibly include additional high-level features
or explore more advanced model architectures that can capture the nuances of the data more
effectively.

The interpretability of the presented NN models is examined using the SHAP framework.
According to SHAP results, the features that have the greatest impact on the prediction are
mostly between layers 5 to 10, corresponding to layers where the peak energy deposition
occurs for both PU and QCD. Eventually, these findings could be used to enhance the NN
models with an attention mechanism. It would enable the models to selectively focus on
relevant information, potentially leading to improved performance.

The next step in model optimization was model(s) quantization on 2 bits using the QKeras
quantization library, which reduces computational and memory costs with minimal accuracy
degradation. In order to reduce model requirements additionally, different techniques for
data refinement are presented. The results have shown that methods that affect the range of
input data, like capping, can significantly lower FPR, which results in a significant reduction
in the amount of unnecessarily stored data. Suggested image channel reduction methods
have resulted in a slight drop in accuracy, with a lower number of NN parameters. Although
quantization is a lossy process that can result in degradation of accuracy, it has been shown
that both data quantization approaches, uniform and nonuniform quantization, achieve per-
formances comparable to a base model while requiring significantly less precision for data
storage.

Furthermore, this thesis considers a multi-class classification problem with four classes:
EM shower, PU, QCD jets, and pions. Two scenarios can improve the low performance of
developed NN models based just on raw detector data. The first one involves joining PU
and QCD samples in a unique class. The second approach, based on additional features that
measure the similarity between the longitudinal profile of each particle using Chebyshev
distance, overperforms previous attempts, achieving 96% accuracy.

In the previously presented approaches, the goal was to improve the efficiency and reduce
the resource consumption of the developed models by quantizing the model and applying
various refinement methods to the data. As the quality of the data is crucial for the accuracy
and effectiveness of the machine learning methods, the last conducted tests are aimed at
improving the quality of the database itself by presenting an alternative way of generating
HGCAL images. The model performances are comparable with those based on databases
generated by using standard techniques. Even though the suggested approach has its own

106

Chapter 4. CONCLUSIONS AND FUTURE WORK

limitations (for some shower shapes), the observation suggests that research into alternative
approaches to HGCAL image generation should continue.

As intended, the presented data refinement methods have enabled a further reduction in
the model resource consumption, which is confirmed in the final step of the experiment. Us-
ing the hls4ml library, selected models are converted into the firmware to be implemented
on FPGA. The chosen models depending on the applied reduction approach, enable differ-
ent levels of optimization. All implemented models can be executed within a set latency.
Model quantization resulted in just 2 digital signal processors used and flip-flop and lookup
table utilization under 1% and 4%, respectively. It has been demonstrated that employing
variations of the proposed quantized convolutional neural network can result in additional
resource savings when implementing the model in FPGA. Specifically, compared with a
base model, the use of model and data quantization can reduce the number of flip-flops by
35.78% and the number of lookup tables by 6.17%.

In order to improve the accuracy of trigger algorithms based on HGCAL data, future
efforts will be aimed toward introducing new features, including high-level ones, or explor-
ing advanced model architectures that can better capture the subtleties of the data. Another
potential research direction is to investigate an effective method for exploiting the sparsity
of HGCAL images.

107

Chapter 4. CONCLUSIONS AND FUTURE WORK

108

BIBLIOGRAPHY

[1] G. Apollinari, B. A. I., O. Brüning, P. Fessia, M. Lamont, L. Rossi and L. Tavian,
editors, High-Luminosity Large Hadron Collider (HL-LHC): Technical design report,
CERN Yellow Reports: Monographs, CERN, Geneva, 2020.

[2] CMS Collaboration, The CMS experiment at the CERN LHC, Journal of Instrumen-
tation, 3, 08, S08004, 2008.

[3] P. Mouche, Overall view of the LHC. Vue d’ensemble du LHC,
https://cds.cern.ch/record/1708847?ln=hr, [Accessed 2023-06-15].

[4] The Nobel Prize in Physics 2013, https://www.nobelprize.org/prizes/
physics/2013/summary/, [Accessed June 26th 2024.].

[5] I. Alonso, O. Brüning, P. Fessia, M. Lamont, L. Rossi, L. Tavian, M. Zerlauth and
K. Marinov, High-luminosity large hadron collider (HL-LHC): Technical design re-
port, 2023.

[6] W. Herr and B. Muratori, Concept of luminosity, CERN Accelerator School and DESY
Zeuthen: Accelerator Physics, 361–377, 2003.

[7] LS3 schedule change, https://hilumilhc.web.cern.ch/article/
ls3-schedule-change, [Accessed June 26th 2024.].

[8] J. Mnich, The Future of Particle Physics CERN view, https://indico.cern.ch/
event/877521/contributions/4954197/attachments/2520448/4333991/JM%
20Split%20Oct2022-vs3.pdf, 2022, [Accessed 30-06-2024].

[9] K. Albertsson et al., Machine learning in high energy physics community white paper,
Journal of Physics: Conference Series, 1085, 2018.

[10] H. Yang, B. Roe and J. Zhu, Studies of stability and robustness for artificial neural
networks and boosted decision trees, Nuclear Instruments and Methods in Physics
Research Section A Accelerators Spectrometers Detectors and Associated Equipment,
574, 2006.

[11] B. Roe, H. Yang, J. Zhu, Y. Liu, I. Stancu and G. McGregor, Boosted decision trees as
an alternative to artificial neural networks for particle identification, Nuclear Instru-
ments and Methods in Physics Research A, 543, 2004.

[12] B. H. Denby, Neural networks and cellular automata in experimental high-energy
physics, Computer Physics Communications, 49, 429–448, 1988.

[13] P. Baldi, P. Sadowski and D. Whiteson, Searching for exotic particles in high-energy
physics with deep learning, Nature communications, 5, 4308, 2014.

109

https://www.nobelprize.org/prizes/physics/2013/summary/
https://www.nobelprize.org/prizes/physics/2013/summary/
https://hilumilhc.web.cern.ch/article/ls3-schedule-change
https://hilumilhc.web.cern.ch/article/ls3-schedule-change
https://indico.cern.ch/event/877521/contributions/4954197/attachments/2520448/4333991/JM%20Split%20Oct2022-vs3.pdf
https://indico.cern.ch/event/877521/contributions/4954197/attachments/2520448/4333991/JM%20Split%20Oct2022-vs3.pdf
https://indico.cern.ch/event/877521/contributions/4954197/attachments/2520448/4333991/JM%20Split%20Oct2022-vs3.pdf

BIBLIOGRAPHY

[14] J. Cogan, M. Kagan, E. Strauss and A. Schwarztman, Jet-images: Computer vision
inspired techniques for jet tagging, Journal of High Energy Physics, 2015, 2014.

[15] C. F. Madrazo, I. H. Cacha, L. L. Iglesias and J. M. de Lucas, Application of a con-
volutional neural network for image classification to the analysis of collisions in high
energy physics, CoRR, abs/1708.07034, 2017.

[16] M. Andrews, M. Paulini, S. Gleyzer and B. Poczos, Exploring end-to-end deep learn-
ing applications for event classification at CMS, EPJ Web of Conferences, 214, 06031,
01 2019.

[17] A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M. Messier, E. Niner, G. Pawloski,
F. Psihas, A. Sousa and P. Vahle, A convolutional neural network neutrino event clas-
sifier, Journal of Instrumentation, 11, 04 2016.

[18] A. D. Florio, F. Pantaleo, A. Carta and on behalf of the CMS collaboration, Convolu-
tional neural network for track seed filtering at the CMS high-level trigger, Journal of
Physics: Conference Series, 1085, 4, 042040, 2018.

[19] M.-H. Shahid, Anomaly Detection for CMS L1 trigger at HL-LHC,
https://cds.cern.ch/record/2790202?ln=hr, 2021.

[20] S. R. Qasim, N. Chernyavskaya, J. Kieseler, K. Long, O. Viazlo, M. Pierini and
R. Nawaz, End-to-end multi-particle reconstruction in high occupancy imaging
calorimeters with graph neural networks, The European Physical Journal C, 82, 8,
2022.

[21] A. Butter, T. Plehn and R. Winterhalder, How to GAN LHC events, SciPost Physics,
7, 2019.

[22] R. Sipio, M. Giannelli, S. Haghighat and S. Palazzo, A generative-adversarial network
approach for the simulation of QCD dijet events at the LHC, The Journal of High
Energy Physics, 050, 2019.

[23] E. Shumka, A. Samalan, M. Tytgat, M. el Sawy, G. Alves, F. Marujo, E. Coelho,
E. M. Costa, H. Nogima, A. Santoro, S. Fonseca de Souza, D. de Jesus Damião,
M. Thiel, K. Amarilo, M. Filho, A. Aleksandrov, R. Hadjiiska, P. Iaydjiev,
M. Rodozov and F. Araujo, Machine learning based tool for CMS RPC currents qual-
ity monitoring, Nuclear Instruments and Methods in Physics Research Section A: Ac-
celerators, Spectrometers, Detectors and Associated Equipment, 1054, 168449, 2023.

[24] B. Denby, M. Campbell, F. Bedeschi, N. Chriss, C. Bowers and F. Nesti, Neural net-
works for triggering, Nuclear Science, IEEE Transactions on, 37, 248 – 254, 05 1990.

[25] M. Courbariaux, Y. Bengio and J. David, Binaryconnect: Training deep neural net-
works with binary weights during propagations, Proceedings of the 28th Interna-
tional Conference on Neural Information Processing Systems - Volume 2, NIPS’15,
3123–3131, MIT Press, Cambridge, MA, USA, 2015.

[26] M. Rastegari, V. Ordonez, J. Redmon and A. Farhadi, XNOR-net: ImageNet classifi-
cation using binary convolutional neural networks, 10 2016.

110

BIBLIOGRAPHY

[27] T. Boser, J. Nielsen, I. J. Johnson and P. Calafiura, CNNs on FPGAs for Track Recon-
struction, https://dca.ue.ucsc.edu/system/files/dca/1091/1091.pdf, 2018.

[28] D. Diaz, M. Quinnan, R. Kansal, E. E. Khoda and J. Duarte, hls4ml tuto-
rial, https://indico.cern.ch/event/1176254/contributions/4940415/
attachments/2483939/4264585/snowmass%20hls4ml%20tutorial.pdf, [Ac-
cessed 2024-01-15].

[29] FastML Team, fastmachinelearning/hls4ml, 2023.

[30] J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar, B. Kreis, J. Ngadiuba, M. Pierini,
N. Tran and Z. Wu, Fast inference of deep neural networks in FPGAs for particle
physics, Journal of Instrumentation, 13, 2018.

[31] C. N. Coelho, A. Kuusela, S. Li, H. Zhuang, T. Aarrestad, V. Loncar, J. Ngadiuba,
M. Pierini, A. Pol and S. Summers, Automatic heterogeneous quantization of deep
neural networks for low-latency inference on the edge for particle detectors, Nature
Machine Intelligence, 675–686, 2021.

[32] J. Ngadiuba, V. Loncar, M. Pierini, S. Summers, G. Di Guglielmo, J. Duarte, P. Harris,
D. Rankin, S. Jindariani, M. Liu, K. Pedro, N. Tran, E. Kreinar, S. Sagear, Z. Wu
and D. Hoang, Compressing deep neural networks on FPGAs to binary and ternary
precision with hls4ml, Machine Learning: Science and Technology, 2, 1, 015001,
2020.

[33] T. Aarrestad et al., Fast convolutional neural networks on FPGAs with hls4ml, Mach.
Learn. Sci. Tech., 2, 4, 045015, 2021.

[34] A. Elabd, V. Razavimaleki, S.-Y. Huang, J. Duarte, M. Atkinson, G. DeZoort,
P. Elmer, S. Hauck, J.-X. Hu, S.-C. Hsu, B.-C. Lai, M. Neubauer, I. Ojalvo, S. Thais
and M. Trahms, Graph neural networks for charged particle tracking on FPGAs, Fron-
tiers in Big Data, 5, 828666, 03 2022.

[35] Y.-j. Jwa, G. Di Guglielmo, L. Arnold, L. Carloni and G. Karagiorgi, Real-time in-
ference with 2D convolutional neural networks on field programmable gate arrays for
high-rate particle imaging detectors, Frontiers in Artificial Intelligence, 5, 855184, 05
2022.

[36] E. Ferro, Implementation of Deep Neural Networks for the Level 1 Trigger system of
the future High-Granularity Calorimeter (HGCAL), https://webthesis.biblio.
polito.it/15937/, [Accessed December 04th 2023.].

[37] D. Barney, CMS Detector Slice, https://cds.cern.ch/record/2120661, 2016, [Accessed
2023-08-15].

[38] S. Chatrchyan et al., Observation of a New Boson at a Mass of 125 GeV with the CMS
Experiment at the LHC, Phys. Lett. B, 716, 30–61, 2012.

[39] T. Sakuma, Cutaway diagrams of CMS detector, https://cds.cern.ch/record/2665537,
2019, [Accessed 2024-01-10].

[40] I. Neutelings, CMS wiki pages, how to draw diagrams in latex with TikZ., [Accessed
2024-01-15].

111

https://indico.cern.ch/event/1176254/contributions/4940415/attachments/2483939/4264585/snowmass%20hls4ml%20tutorial.pdf
https://indico.cern.ch/event/1176254/contributions/4940415/attachments/2483939/4264585/snowmass%20hls4ml%20tutorial.pdf
https://webthesis.biblio.polito.it/15937/
https://webthesis.biblio.polito.it/15937/

BIBLIOGRAPHY

[41] V. Veszpremi, Operation and performance of the CMS tracker, Journal of Instrumen-
tation, 9, 03, C03005, mar 2014.

[42] S. Chatrchyan et al., The CMS Experiment at the CERN LHC, JINST, 3, S08004,
2008.

[43] G. Organtini, Avalanche photodiodes for the CMS electromagnetic calorimeter, 1998
IEEE Nuclear Science Symposium Conference Record., 1, 189–194 vol.1, 1998.

[44] S. Chatrchyan, E. Anttila, S. Czellar, J. Härkönen, A. Heikkinen, V. Karimäki, R. Kin-
nunen, J. Klem, M. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Linden,
P. Luukka, T. Mäenpää, J. Nysten, E. Tuominen, J. Tuominiemi, D. Ungaro and R. Ro-
maniuk, Performance of CMS hadron calorimeter timing and synchronization using
test beam, cosmic ray, and LHC beam data, Journal of Instrumentation, 5, T03013,
03 2010.

[45] J. G. Layter, The CMS muon project: Technical Design Report, Technical design re-
port. CMS, CERN, Geneva, 1997.

[46] V. Khachatryan, A. Sirunyan, A. Tumasyan, W. Adam, E. Asilar, T. Bergauer,
J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Früh-
wirth, V. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler, V. Knünz, A. König,
M. Krammer, I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, B. Rah-
baran, H. Rohringer, J. Schieck, R. Schöfbeck, J. Strauss, W. Treberer-Treberspurg,
W. Waltenberger, C.-E. Wulz, V. Mossolov, N. Shumeiko, J. S. Gonzalez, S. Alder-
weireldt, T. Cornelis and E.A., The CMS trigger system, Journal of Instrumentation,
12, 01, P01020, 2017.

[47] CMS Colaboration, The phase-2 upgrade of the CMS Level-1 Trigger, Tech. rep.,
CERN, Geneva, 2020.

[48] E. Govorkova, E. Puljak, T. Aarrestad, M. Pierini, K. A. Woźniak and J. Ngadiuba,
LHC physics dataset for unsupervised new physics detection at 40 MHz, Scientific
Data, 9, 03 2022.

[49] W. Adam et al., The CMS high level trigger, Eur. Phys. J. C, 46, 605–667, 2006.

[50] CMS Collaboration, The Phase-2 Upgrade of the CMS Data Acquisition and High
Level Trigger, Tech. rep., CERN, Geneva, 2021.

[51] CMS Colaboration, Particle-Flow Event Reconstruction in CMS and Performance for
Jets, Taus, and MET, Tech. rep., CERN, Geneva, 2009.

[52] F. Beaudette, The CMS Particle Flow Algorithm, International Conference on
Calorimetry for the High Energy Frontier, 295–304, 2013.

[53] B. Akgun, The CMS High Granularity Calorimeter for HL-LHC - a tracking detector
for calorimetry, Tech. rep., CERN, Geneva, 2019.

[54] CMS Colaboration, The Phase-2 Upgrade of the CMS Endcap Calorimeter, Tech. rep.,
CERN, Geneva, 2017.

112

BIBLIOGRAPHY

[55] M. O. Wiehe, The CMS High Granularity Calorimeter for the High Luminosity LHC,
Tech. rep., CERN, Geneva, 2022.

[56] H. Gerwig, Engineering challenges in mechanics and electronics in the world’s first
particle-flow calorimeter at a hadron collider: The CMS high-granularity calorime-
ter, Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 1044, 167493, 2022.

[57] J.-B. Sauvan and on behalf of the CMS Collaboration, Concepts and design of the
CMS high granularity calorimeter level-1 trigger, Journal of Physics: Conference
Series, 928, 1, 012026, 2017.

[58] S. Pandey, Performance of High Granularity Calorimeter prototypes for the CMS HL-
LHC upgrade in beam test experiments at CERN, https://cds.cern.ch/record/2810369,
2022, [Accessed on 2024-02-20].

[59] T. Quast, Beam Test Calorimeter Prototypes for the CMS Calorimeter Endcap
Upgrade: Qualification, Performance Validation and Fast Generative Modelling,
Springer Cham, 2021.

[60] M. Bonanomi, Beam-tests of CMS high granularity calorimeter prototypes at CERN,
Journal of Instrumentation, 15, 04, C04001, 2020.

[61] T. Quast, Construction and beam-tests of silicon-tungsten prototype modules for the
CMS high granularity calorimeter for HL-LHC, Journal of Instrumentation, 13, 02,
C02044, feb 2018.

[62] C. Bishop, Pattern Recognition and Machine Learning, 16, 140–155, Springer New
York, NY, 2006.

[63] L. Cao, Data science: A comprehensive overview, ACM Computing Surveys, 50, 3,
2017.

[64] J. Qiu, Q. Wu, G. Ding, Y. Xu and S. Feng, A survey of machine learning for big data
processing, EURASIP Journal on Advances in Signal Processing, 2016, 05 2016.

[65] M. Najafabadi, F. Villanustre, T. Khoshgoftaar, N. Seliya, R. Wald and
E. Muharemagic, Deep learning applications and challenges in big data analytics,
Journal of Big Data, 2, 12 2015.

[66] S. Bridges, M. Figueroa, C. Diorio and D. Hsu, Field-programmable learning arrays,
S. Becker, S. Thrun and K. Obermayer, editors, Advances in Neural Information Pro-
cessing Systems, 15, MIT Press, 2002.

[67] J. Ruiz-Rosero, G. Ramirez-Gonzalez and R. Khanna, Field programmable gate array
applications—a scientometric review, Computation, 7, 4, 2019.

[68] C. Sun, T. Nakajima, Y. Mitsumori, Y. Horii and M. Tomoto, Fast muon tracking
with machine learning implemented in FPGA, Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 1045, 167546, 01 2023.

113

BIBLIOGRAPHY

[69] R. Ospanov, C. Feng, W. Dong, W. Feng, K. Zhang and S. Yang, Development of a
resource-efficient FPGA-based neural network regression model for the ATLAS muon
trigger upgrades, The European Physical Journal C, 82, 06 2022.

[70] E. Khoda, D. Rankin, R. Lima, P. Harris, S. Hauck, S.-C. Hsu, M. Kagan, V. Loncar,
C. Paikara, R. Rao, S. Summers, C. Vernieri and A. Wang, Ultra-low latency recurrent
neural network inference on FPGAs for physics applications with hls4ml, Machine
Learning: Science and Technology, 4, 03 2023.

[71] A. L. Samuel, Some studies in machine learning using the game of checkers, IBM
Journal of Research and Development, 3, 3, 210–229, 1959.

[72] D. Solyali, A comparative analysis of machine learning approaches for short-/long-
term electricity load forecasting in cyprus, Sustainability, 12, 04 2020.

[73] G. Langs, S. Röhrich, J. Hofmanninger, F. Prayer, J. Pan, C. Herold and H. Prosch,
Machine learning: from radiomics to discovery and routine, Der Radiologe, 58, 06
2018.

[74] A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui,
G. Corrado, S. Thrun and J. Dean, A guide to deep learning in healthcare, Nature
Medicine, 25, 01 2019.

[75] T. Ching, D. Himmelstein, B. Beaulieu-Jones, A. Kalinin, T. Do, G. Way, E. Fer-
rero, P. Agapow, M. Zietz, M. Hoffman, W. Xie, G. Rosen, B. Lengerich, J. Israeli,
J. Lanchantin, S. Woloszynek, A. Carpenter, A. Shrikumar, J. Xu and C. Greene, Op-
portunities and obstacles for deep learning in biology and medicine, Journal of The
Royal Society Interface, 15, 20170387, 04 2018.

[76] J. Goodell, S. Kumar, W. M. Lim and D. Pattnaik, Artificial intelligence and machine
learning in finance: Identifying foundations, themes, and research clusters from bib-
liometric analysis, Journal of Behavioral and Experimental Finance, 32, 08 2021.

[77] S. Athey, The Impact of Machine Learning on Economics, 507–552, National Bureau
of Economic Research, Inc., 2019.

[78] S. Kaffash, A. Nguyen and J. Zhu, Big data algorithms and applications in intelligent
transportation system: A review and bibliometric analysis, International Journal of
Production Economics, 231, 107868, 07 2020.

[79] X. Ying, An overview of overfitting and its solutions, Journal of Physics: Conference
Series, 1168, 2, 022022, feb 2019.

[80] P. Cunningham and S. J. Delany, Underestimation bias and underfitting in machine
learning, https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=1407&
context=scschcomcon, [Accessed 30-03-2024].

[81] A. Piotrowski and J. Napiórkowski, A comparison of methods to avoid overfitting in
neural networks training in the case of catchment runoff modeling, Journal of Hydrol-
ogy, 476, 97–111, 01 2013.

[82] B. Efron and R. Tibshirani, Improvements on cross-validation: The 632+ bootstrap
method, JASA. Journal of the American Statistical Association, 92, 06 1997.

114

https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=1407&context=scschcomcon
https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=1407&context=scschcomcon

BIBLIOGRAPHY

[83] P. Burman, A comparative study of ordinary cross-validation, v-fold cross-validation
and the repeated learning-testing methods, Biometrika, 76, 503–514, 09 1989.

[84] P. Zhang, Model selection via multifold cross validation, The Annals of Statistics, 21,
03 1993.

[85] L. Prechelt, Automatic early stopping using cross validation: Quantifying the criteria,
Neural Networks, 11, 761–767, 06 1998.

[86] A. Collaboration, The ATLAS Trigger System for LHC Run 3 and Trigger perfor-
mance in 2022, 2024.

[87] M. Sahin, D. Krücker and I.-A. Melzer-Pellmann, Performance and optimization of
support vector machines in high-energy physics classification problems, Nuclear In-
struments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 838, 01 2016.

[88] A. Vaiciulis, Support vector machines in analysis of top quark production, Nuclear
Instruments and Methods in Physics Research Section A Accelerators Spectrometers
Detectors and Associated Equipment, 502, 05 2002.

[89] T. Trzcinski, L. Graczykowski and M. Glinka, Using Random Forest Classifier for
Particle Identification in the ALICE Experiment, 3–17, Springer, Cham, 2020.

[90] M. Azhari, A. Abarda, B. Ettaki, J. Zerouaoui and M. Dakkon, Higgs Boson Discov-
ery using Machine Learning Methods with Pyspark, Procedia Computer Science, 170,
1141–1146, 01 2020.

[91] M. Patel and H. Skottowe, A cut-based selection for Bd → K∗0µ+µ− at LHCb, Tech.
rep., CERN, Geneva, 2010.

[92] D. Alvestad, N. Fomin, J. Kersten, S. Maeland and I. Strumke, Beyond cuts in small
signal scenarios: Enhanced sneutrino detectability using machine learning, The Euro-
pean Physical Journal C, 83, 05 2023.

[93] C. Bini, Data analysis in particle physics, http://www.roma1.infn.it/~bini/
StatEPP_new.pdf, [Accessed December 04th 2013.].

[94] C. Cortes and V. Vapnik, Support vector network, Machine Learning, 20, 273–297,
09 1995.

[95] E. García-Gonzalo, Z. Fernández-Muñiz, P. J. Garcia Nieto, A. Sánchez and
M. Menéndez, Hard-rock stability analysis for span design in entry-type excavations
with learning classifiers, Materials, 9, 531, 06 2016.

[96] C.-W. Hsu, C.-C. Chang and C.-J. Lin, A practical guide to support vector classication,
https://github.com/tpn/pdfs/blob/master/A2008.

[97] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot and E. Duchesnay, Scikit-learn: Machine learning in Python,
Journal of Machine Learning Research, 12, 2825–2830, 2011.

115

http://www.roma1.infn.it/~bini/StatEPP_new.pdf
http://www.roma1.infn.it/~bini/StatEPP_new.pdf

BIBLIOGRAPHY

[98] P. Vannerem, K. R. Muller, B. Scholkopf, A. Smola and S. Soldner-Rembold, Clas-
sifying LEP data with support vector algorithms, 6th International Workshop on New
Computing Techniques in Physics Research: Software Engineering, Artificial Intel-
ligence Neural Nets, Genetic Algorithms, Symbolic Algebra, Automatic Calculation,
1999.

[99] F. Sforza, V. Lippi and G. Chiarelli, Rejection of multi-jet background in p anti-p —
> e nu + j anti-j channel through a SVM classifier, Journal of Physics: Conference
Series, 331, 2011.

[100] D. Whiteson and N. Naumann, Support vector regression as a signal discriminator in
high energy physics, Neurocomputing, 55, 1, 251–264, 2003.

[101] A. Vossen, Support vector machines in high energy physics, 2008,
https://cds.cern.ch/record/1100522/files/p23.pdf.

[102] L. Breiman, Random forests, Machine Learning, 45, 5–32, 2001.

[103] M. Y. Khan, A. Qayoom, M. Nizami, M. S. Siddiqui, S. Wasi and K.-U.-R. R. Syed,
Automated prediction of good dictionary examples (GDEX): A comprehensive exper-
iment with distant supervision, machine learning, and word embedding-based deep
learning techniques, Complexity, 2021.

[104] A. Cutler, D. Cutler and J. Stevens, Random Forests, 45, 157–176, Springer, New
York, NY, 01 2011.

[105] M. Kursa and W. Rudnicki, Feature selection with boruta package, Journal of Statis-
tical Software, 36, 1–13, 09 2010.

[106] S. Kuzu, Random forest based multiclass classification approach for highly skewed
particle data, Journal of Scientific Computing, 95, 02 2023.

[107] M. Azhari, A. Alaoui, Z. Acharoui, B. Ettaki and J. Zerouaoui, Adaptation of the
random forest method: solving the problem of pulsar search, SCA ’19: Proceedings
of the 4th International Conference on Smart City Applications, 1–6, 10 2019.

[108] T. Abraham, (Physio)logical circuits: The intellectual origins of the McCulloch-Pitts
neural networks, Journal of the history of the behavioral sciences, 38, 3–25, 02 2002.

[109] F. Rosenblatt, The perceptron: a probabilistic model for information storage and or-
ganization in the brain., Psychological review, 65, 6, 386, 1958.

[110] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms, Spartan Books, 01 1962.

[111] M. Minsky and S. Papert, Perceptrons - An Introduction to Computational Geometry,
MIT Press, 1987.

[112] S. Khamaiseh, D. Bagagem, A. Al-Alaj, M. Mancino and H. Alomari, Adversarial
deep learning: A survey on adversarial attacks and defense mechanisms on image
classification, IEEE Access, PP, 1–1, 2022.

116

BIBLIOGRAPHY

[113] Z. Yanling, D. Bimin and W. Zhanrong, Analysis and study of perceptron to solve xor
problem, The 2nd International Workshop on Autonomous Decentralized System, 168
– 173, 2002.

[114] K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward networks are uni-
versal approximators, Neural Networks, 2, 5, 359–366, 1989.

[115] H. Afan, A. Ibrahem Ahmed Osman, Y. Essam, A.-M. Najah, Y. Huang, O. Kisi,
M. Sherif, A. Sefelnasr, K. Chau and A. El-Shafie, Modeling the fluctuations of
groundwater level by employing ensemble deep learning techniques, Engineering Ap-
plications of Computational Fluid Mechanics, 15, 1420–1439, 2021.

[116] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard and
L. D. Jackel, Backpropagation applied to handwritten zip code recognition, Neural
Computation, 1, 541–551, 1989.

[117] A. Krizhevsky, I. Sutskever and G. Hinton, Imagenet classification with deep convo-
lutional neural networks, Neural Information Processing Systems, 25, 01 2012.

[118] H. Gu, Y. Wang, S. Hong and G. Gui, Blind channel identification aided generalized
automatic modulation recognition based on deep learning, IEEE Access, PP, 1–1, 08
2019.

[119] C. Guo, G. Pleiss, Y. Sun and K. Weinberger, On calibration of modern neural net-
works, Proceedings of the 34th International Conference on Machine Learning - Vol-
ume 70, ICML’17, 1321–1330, JMLR.org, 2017.

[120] V. Sheng and C. Ling, Thresholding for making classifiers cost sensitive, AAAI Con-
ference on Artificial Intelligence, 1, 01 2006.

[121] C. Sammut and G. Webb, Encyclopedia of Machine Learning, Springer Publishing
Company, Incorporated, 1st edn., 2011.

[122] W. J. Youden, Index for rating diagnostic tests, Cancer, 3, 1, 32–35, 1950.

[123] H. Abramowicz, A. Caldwell and R. Sinkus, Neural network based electron identifica-
tion in the ZEUS calorimeter, Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 365, 2,
508–517, 1995.

[124] Electron Identification with a Convolutional Neural Network in the ATLAS Experi-
ment, https://cds.cern.ch/record/2850666/export/hx?ln=hr, 2023.

[125] A. Butter and T. Plehn, Generative Networks for LHC Events, 191–240, World Scien-
tific Publishing Company, 2022.

[126] S. Otten, S. Caron, W. de Swart, M. Beekveld, L. Hendriks, C. Leeuwen, D. Podare-
anu, R. Austri and R. Verheyen, Event generation and statistical sampling for physics
with deep generative models and a density information buffer, Nature Communica-
tions, 12, 2985, 05 2021.

[127] B. Dillon, L. Favaro, T. Plehn, P. Sorrenson and M. Krämer, A normalized autoencoder
for LHC triggers, SciPost Physics Core, 6, 11 2023.

117

BIBLIOGRAPHY

[128] B. Nachman and D. Shih, Anomaly detection with density estimation, Physical Re-
view D, 101, 04 2020.

[129] K. Krzyzanska and B. Nachman, Simulation-based anomaly detection for multilep-
tons at the LHC, Journal of High Energy Physics, 2023, 01 2023.

[130] K. Fraser, S. Homiller, R. Mishra, B. Ostdiek and M. Schwartz, Challenges for unsu-
pervised anomaly detection in particle physics, Journal of High Energy Physics, 2022,
03 2022.

[131] V. Ngairangbam, M. Spannowsky and M. Takeuchi, Anomaly detection in high-
energy physics using a quantum autoencoder, Physical Review D, 105, 05 2022.

[132] J. Collins, Y. Huang, S. Knapen, B. Nachman and D. White-
son, Machine-learning compression for particle physics discoveries,
https://inspirehep.net/literature/2168899, 2022.

[133] G. Di Guglielmo, F. Fahim, C. Herwig, M. Blanco Valentin, J. Duarte, C. Gingu,
P. Harris, J. Hirschauer, M. Kwok, V. Loncar, Y. Luo, L. Miranda, J. Ngadiuba,
D. Noonan, S. Memik, M. Pierini, S. Summers and N. Tran, A reconfigurable neural
network ASIC for detector front-end data compression at the HL-LHC, IEEE Trans-
actions on Nuclear Science, PP, 1–1, 06 2021.

[134] R. Shenoy, J. Duarte, C. Herwig, J. Hirschauer, D. Noonan, M. Pierini, N. Tran and
C. Suarez, Differentiable earth mover’s distance for data compression at the high-
luminosity LHC, Machine Learning: Science and Technology, 4, 12 2023.

[135] Y. Huang, Y. Ren, S. Yoo and J. Huang, Efficient data compression for 3D sparse tpc
via bicephalous convolutional autoencoder, 2021 20th IEEE International Conference
on Machine Learning and Applications (ICMLA), 1094–1099, 2021.

[136] Wulff, Eric, Deep Autoencoders for Compression in High Energy Physics, 2020, Stu-
dent Paper.

[137] Wallin, Erik, Tests of Autoencoder Compression of Trigger Jets in the ATLAS Exper-
iment, 2020, Student Paper.

[138] N. Nottbeck, D. C. Schmitt and P. D. V. Büscher, Implementation of high-
performance, sub-microsecond deep neural networks on FPGAs for trigger applica-
tions, Journal of Instrumentation, 14, P09014–P09014, 09 2019.

[139] G. Aad, T. Calvet, N. Chiedde, R. Faure, E. Fortin, L. Laatu, E. Monnier and N. Sur,
Firmware implementation of a recurrent neural network for the computation of the
energy deposited in the liquid argon calorimeter of the ATLAS experiment, Journal
of Instrumentation, 18, P05017, 05 2023.

[140] G. Aad, A.-S. Berthold, T. Calvet, N. Chiedde, E. Fortin, N. Fritzsche, R. Hentges,
L. Laatu, E. Monnier, A. Straessner and J. Voigt, Artificial neural networks on FPGAs
for real-time energy reconstruction of the ATLAS LAr calorimeters, Computing and
Software for Big Science, 5, 12 2021.

[141] Accelerated Charged Particle Tracking with Graph Neural Networks on FPGAs, 2020.

118

BIBLIOGRAPHY

[142] H. M. zu Theenhausen, B. von Krosigk and J. Wilson, Neural-network-based level-1
trigger upgrade for the SuperCDMS experiment at SNOLAB, Journal of Instrumen-
tation, 18, 06, P06012, 2023.

[143] A. Belousov, I. Kisel, R. Lakos and A. Mithran, Neural-network-based quark & gluon
plasma trigger for the CBM experiment at FAIR, Algorithms, 16, 7, 2023.

[144] C. Collaboration, Pileup mitigation at CMS in 13 TeV data, Journal of Instrumenta-
tion, 15, 09, P09018, sep 2020.

[145] A. Kalweit, Data analysis in particle physics, https://indico.cern.ch/
event/355973/contributions/1766267/attachments/1124931/1605658/
DataAnalysisTeacher.pdf.

[146] CMS Collaboration, CMSSW: CMS Software, https://github.com/cms-sw/
cmssw, 2024, [Accessed: 2023-08-03].

[147] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna,
S. Prestel, C. O. Rasmussen and P. Z. Skands, An introduction to PYTHIA 8.2, Com-
puter Physics Communications, 191, 159–177, 2015.

[148] Geant4 Collaboration, Geant4: Geant4 is a toolkit to create simulations of the passage
of particles or radiation through matter. (software), 2006, [Accesed: 2023-07-08].

[149] L. Almeida, M. Backovic, M. Cliche, S. Lee and M. Perelstein, Playing tag with ANN:
Boosted top identification with pattern recognition, Journal of High Energy Physics,
2015, 01 2015.

[150] P. Baldi, K. Bauer, C. Eng, P. Sadowski and D. Whiteson, Jet substructure classifi-
cation in high-energy physics with deep neural networks, Physical Review D, 93, 03
2016.

[151] P. Komiske, E. Metodiev and M. Schwartz, Deep learning in color: towards automated
quark/gluon jet discrimination, Journal of High Energy Physics, 2017, 12 2016.

[152] L. de Oliveira, M. Kagan, L. Mackey, B. Nachman and A. Schwartzman, Jet-images
– deep learning edition, Journal of High Energy Physics, 2016, 11 2015.

[153] A. Hammad, S. Khalil and S. Moretti, Search for mono-higgs signals in bb final states
using deep neural networks, Phys. Rev. D, 107, 075027, Apr 2023.

[154] T. Flacke, J. Kim, M. Kunkel, P. Ko, J. Pi, W. Porod and L. Schwarze, Uncover-
ing doubly charged scalars with dominant three-body decays using machine learning,
Journal of High Energy Physics, 2023, 11 2023.

[155] M. Prvan, Algorithms for the Level-1 trigger with the HGCAL calorimeter for
the CMS HL-LHC upgrade, https://llr.in2p3.fr/IMG/pdf/thesis_postfinal_prvan.pdf,
2020.

[156] S. Kotsiantis, D. Kanellopoulos and P. Pintelas, Data preprocessing for supervised
learning, International Journal of Computer Science, 1, 111–117, 01 2006.

119

https://indico.cern.ch/event/355973/contributions/1766267/attachments/1124931/1605658/DataAnalysisTeacher.pdf
https://indico.cern.ch/event/355973/contributions/1766267/attachments/1124931/1605658/DataAnalysisTeacher.pdf
https://indico.cern.ch/event/355973/contributions/1766267/attachments/1124931/1605658/DataAnalysisTeacher.pdf
https://github.com/cms-sw/cmssw
https://github.com/cms-sw/cmssw

BIBLIOGRAPHY

[157] C. Fan, M. Chen, X. Wang, J. Wang and B. Huang, A review on data preprocessing
techniques toward efficient and reliable knowledge discovery from building opera-
tional data, Frontiers in Energy Research, 9, 03 2021.

[158] Y. Liu, L. Lita, R. Niculescu, K. Bai, P. Mitra and C. Giles, Real-time data pre-
processing technique for efficient feature extraction in large scale datasets, Interna-
tional Conference on Information and Knowledge Management, Proceedings, 981–
990, 10 2008.

[159] L. de Amorim, G. Cavalcanti and R. Cruz, The choice of scaling technique matters
for classification performance, Applied Soft Computing, 133, 109924, 2023.

[160] G. Kumar and P. K. Bhatia, A detailed review of feature extraction in image pro-
cessing systems, 2014 Fourth International Conference on Advanced Computing &
Communication Technologies, 5–12, 2014.

[161] M. Andrews, J. Alison, S. An, B. Burkle, S. Gleyzer, M. Narain, M. Paulini, B. Poczos
and E. Usai, End-to-end jet classification of quarks and gluons with the CMS open
data, Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrometers Detect. Assoc.
Equip., 977, 164304, 2020.

[162] K. Pearson, Liii. on lines and planes of closest fit to systems of points in space, Philo-
sophical Magazine Series 1, 2, 559–572, 1901.

[163] H. Hotelling, Analysis of a complex of statistical variables into principal components.,
Journal of Educational Psychology, 24, 498–520, 1933.

[164] F. Pantaleo and M. Rovere, The Iterative Clustering framework for the CMS HGCAL
Reconstruction, Tech. rep., CERN, Geneva, 2023.

[165] G. Grasseau, A. Kumar, A. Sartirana, A. Lobanov and F. Beaudette, A deep neural net-
work method for analyzing the CMS High Granularity Calorimeter (HGCAL) events,
EPJ Web Conf., 245, 02003, 2020.

[166] M. A. Mansoori and M. R. Casu, Efficient FPGA implementation of PCA algorithm
for large data using high level synthesis, 2019 15th Conference on Ph.D Research in
Microelectronics and Electronics (PRIME), 65–68, 2019.

[167] D. Fernandez, C. Gonzalez, D. Mozos and S. Lopez, FPGA implementation of the
principal component analysis algorithm for dimensionality reduction of hyperspectral
images, Journal of Real-Time Image Processing, 16, 1–12, 10 2019.

[168] G. V. Cybenko, Approximation by superpositions of a sigmoidal function, Mathemat-
ics of Control, Signals and Systems, 2, 303–314, 1989.

[169] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell and S. Xie, A ConvNet for
the 2020s, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 11966–11976, 2022.

[170] K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recognition,
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–
778, 2016.

120

BIBLIOGRAPHY

[171] M. Tan and Q. V. Le, Efficientnet: Rethinking model scaling for convolutional neural
networks, ArXiv, abs/1905.11946, 2019.

[172] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, You only look once: Unified, real-
time object detection, IEEE Conference on Computer Vision and Pattern Recognition,
779–788, 06 2016.

[173] L. Bernstein, A. Sludds, R. Hamerly, V. Sze, J. Emer and D. Englund, Freely scalable
and reconfigurable optical hardware for deep learning, Scientific Reports, 11, 02 2021.

[174] A. B. Mišura, J. Musić, J. Ožgović and D. Lelas, Performance Comparison of Generic
and Quantized Fully Connected and Convolutional Neural Networks for Real- Time
Signal/Background Classification, International Conference on Software, Telecommu-
nications and Computer Networks (SoftCOM), 2022.

[175] T. Akiba, S. Sano, T. Yanase, T. Ohta and M. Koyama, Optuna: A next-generation hy-
perparameter optimization framework, Proceedings of the 25th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining, KDD ’19, 2623–2631,
Association for Computing Machinery, New York, NY, USA, 2019.

[176] M. Vilares Ferro, Y. Doval Mosquera, F. J. Ribadas Pena and V. M. Darriba Bilbao,
Early stopping by correlating online indicators in neural networks, Neural Networks,
159, 109–124, 2023.

[177] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. Mahoney and K. Keutzer, A Survey of
Quantization Methods for Efficient Neural Network Inference, 291–326, Chapman
and Hall/CRC, 01 2022.

[178] G. Shomron, F. Gabbay, S. Kurzum and U. Weiser, Post-training sparsity-aware quan-
tization, 2021.

[179] Google, QKeras: a quantization deep learning library for tensorflow keras (software),
https://github.com/google/qkeras, 2019, [Accessed: 2023-08-03].

[180] L. Geiger and P. Team, Larq: An open-source library for training binarized neural
networks, Journal of Open Source Software, 5, 45, 1746, 2020.

[181] Y. Bengio, N. Léonard and A. Courville, Estimating or propagating gradients through
stochastic neurons for conditional computation, CoRR, abs/1308.3432, 2013.

[182] S. Gupta, A. Agrawal, K. Gopalakrishnan and P. Narayanan, Deep learning with lim-
ited numerical precision, Proceedings of the 32nd International Conference on In-
ternational Conference on Machine Learning - Volume 37, ICML’15, 1737–1746,
JMLR.org, 2015.

[183] T. Bai, J. Luo, J. Zhao, B. Wen and Q. Wang, Recent advances in adversarial training
for adversarial robustness, Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence (IJCAI-21), 4312–4321, 08 2021.

[184] M. Prvan, A. B. Mišura, V. Pekić and J. Musić, The transfer learning-based approach
for electromagnetic signal classification using simulated HGCAL data, 2023 Interna-
tional Conference on Software, Telecommunications and Computer Networks (Soft-
COM), 1–6, 2023.

121

https://github.com/google/qkeras

BIBLIOGRAPHY

[185] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz,
J. Himmelfarb, N. Bansal and S.-I. Lee, From local explanations to global under-
standing with explainable ai for trees, Nat. Mach. Intell., 2, 1, 2522–5839, 2020.

[186] S. M. Lundberg and S.-I. Lee, A unified approach to interpreting model predictions,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan and
R. Garnett, editors, Advances in Neural Information Processing Systems 30, 4765–
4774, Curran Associates, Inc., 2017.

[187] S. M. Lundberg and S.-I. Lee, A unified approach to interpreting model predictions,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan and
R. Garnett, editors, Advances in Neural Information Processing Systems 30, 4765–
4774, Curran Associates, Inc., 2017.

[188] A. Vossen, Basics of feature selection and statistical learning for high energy physics,
2008, https://cds.cern.ch/record/1094673/files/p1.pdf.

[189] G. H. Nguyen, A. Bouzerdoum and S. L. Phung, Learning pattern classification tasks
with imbalanced data sets, Pattern Recognition, 2009.

[190] A. Ali, S. M. Shamsuddin and A. Ralescu, Classification with class imbalance prob-
lem: A review, International Journal of Advances in Soft Computing and its Applica-
tions, 7, 176–204, 01 2015.

[191] S. M. A. Elrahman and A. Abraham, A review of class imbalance problem, Journal
of Network and Innovative Computing, 2014.

[192] N. Chawla, N. Japkowicz and A. Kołcz, Editorial: Special issue on learning from
imbalanced data sets, SIGKDD Explorations, 6, 1–6, 06 2004.

[193] A. Fernández, S. Río, N. Chawla and F. Herrera, An insight into imbalanced big data
classification: outcomes and challenges, Complex & Intelligent Systems, 3, 03 2017.

[194] W. G. Cochran, The χ2 test of goodness of fit, The Annals of mathematical statistics,
315–345, 1952.

[195] G. Forman et al., An extensive empirical study of feature selection metrics for text
classification., Journal of Machine Learning Research, 3, Mar, 1289–1305, 2003.

[196] A. Bellet, A. Habrard and M. Sebban, Metric learning, Synthesis Lectures on Artificial
Intelligence and Machine Learning, 9, 1–151, 01 2015.

[197] B. Amidan, T. Ferryman and S. Cooley, Data outlier detection using the Chebyshev
theorem, IEEE Aerospace Conference, 3814 – 3819, 2005.

[198] S. A. Afghani and W. Y. M. Putra, Clustering with Euclidean Distance, Manhattan
- Distance, Mahalanobis - Euclidean Distance, and Chebyshev Distance with Their
Accuracy, Indonesian Journal of Statistics and Its Applications, 2021.

[199] A. Singh, A. Yadav and A. Rana, K-means with three different distance metrics, In-
ternational Journal of Computer Applications, 67, 13–17, 2013.

122

BIBLIOGRAPHY

123

Curriculum Vitae

Arijana Burazin Mišura

Arijana Burazin Mišura has extensive experience in teaching and IT. Since 2009, she has
worked as an Assistant, Lecturer, and Senior Lecturer at the University of Split, at the Uni-
versity Department of Professional Studies. Her responsibilities include teaching, guiding
students, and participating in academic activities to improve education quality and learning
environments.

Before her teaching career, Arijana worked as a Web Developer at Protyron Web Solu-
tions from 2001 to 2008. During this time, she enhanced her web development skills and
gained valuable experience in the tech industry, which she now applies in her teaching role.

Arijana’s academic qualifications include a degree in Mathematics, specializing in Math-
ematical Statistics and Informatics, obtained from the Faculty of Science (PMF) in Zagreb in
1997. Her technical skills include proficiency in operating systems like Windows and Linux,
and programming languages such as Python, Java, and JSP. She also has experience using
MATLAB for computational tasks, showing her adaptability in both education and technol-
ogy. Arijana’s blend of practical IT experience and strong academic background makes her
a valuable asset in education, where she continues to inspire and educate the next generation
of professionals.

Životopis

Arijana Burazin Mišura

Arijana Burazin Mišura ima bogato iskustvo u nastavi i informatici. Od 2009. je radila
je kao asistent, predavač i viši predavač na Sveučilištu u Splitu, na Sveučilišnom odjelu za
stručne studije. Njezine obveze uključuju podučavanje, vod̄enje studenata, te sudjelovanje u
akademskim aktivnostima za poboljšanje kvalitete obrazovanja i učenja okruženja.

Prije svoje profesorske karijere, Arijana je radila kao web programer u tvrtki Protyron
Web Solutions od 2001. do 2008. Tijekom tog vremena unaprijedila je svoje programerske
vještine i stekla dragocjeno iskustvo u tehnološkoj industriji, koje sada primjenjuje u svom
podučavanju.

Arijanine akademske kvalifikacije uključuju diplomu iz matematike, specijalizaciju iz
Matematičke statistike i informatike, dobivenu na Prirodoslovno-matematičkom fakultetu
(PMF) u Zagrebu 1997. Njezine tehničke vještine uključuju poznavanje operativnih sustava
poput Windowsa i Linux te programskih jezika kao što su Python, Java i JSP. Ona takod̄er
ima iskustva u korištenju MATLAB-a u nastavi, što pokazuje njezinu prilagodljivost u po-
dručju obrazovanja i tehnologije. Arijanin spoj praktičnog iskustva u informatici i jakog
akademskog obrazovanja čini je vrijednom u obrazovanju, gdje nastavlja inspirirati i pouča-
vati sljedeće generacije profesionalaca.

	Abstract
	Sažetak
	Acknowledgments
	List of Tables
	List of Figures
	List of Acronyms
	INTRODUCTION
	Motivation
	Literature Review
	Hypothesis
	Dissertation Outline

	MATERIALS AND METHODS
	The CMS Detector
	Coordinate System and Conventions
	Subdetectors
	The Inner Tracker
	Calorimeters
	The Muon Chambers

	Trigger System
	The First Level Trigger
	 High-Level Trigger

	The CMS Upgrades for HL-LHC
	The HGCAL Trigger Architecture and Data processing

	Machine Learning in High Energy Physics
	Fundamental ML Principles
	Challenges
	Baseline Particle Classification Methods in HEP
	Cut-off
	Support Vector Machine
	Random Forrest

	Neural Networks
	History and Evolution of Neural Networks
	Multi Layer Perceptron (MLP)
	Convolutional Neural Network (CNN)
	Evaluation
	Classification Threshold Adjustment

	Neural Network Applications in HEP

	Dataset
	Event Generation Process
	Event Simulation
	Event Selection
	Image Formation

	Data Reduction Methods
	Data Refinement
	Selection
	Quantization

	Alternative Image Generation Process
	Consecutive Layers Based Approach
	Principal Component Analysis Based Approach

	Model Development and Reduction Methods
	Model Architecture
	Model Quantization
	QKeras

	RESULTS AND DISCUSSION
	Binary Classification
	Base Neural Network Models
	Model Analysis
	Model Robustness
	Error Analysis
	Model Interpretation

	Model Quantization
	Comparison with Baseline Algorithms
	Cut-Off
	Support Vector Machine
	Random Forest

	Classification Threshold Adjustment
	Data Refinement
	Feature Selection
	Quantization

	Multiclass Classification
	Base four-class Classification
	Four-class Classification with Additional Features
	Joined PU/QCD Background Approach (three-class Classification)

	Alternative images
	FPGA Implementation
	FPGA - Basic Concepts
	hls4ml
	Neural Network Model Selection
	Implementation Results
	Estimation of FPGA Resource Usage

	CONCLUSIONS AND FUTURE WORK
	BIBLIOGRAPHY

