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Modeling occupants’ metabolic rate in office buildings by implementation of smart 

wearable sensors considering personal thermal comfort 

 

 

Abstract: 

This doctoral thesis examines and discusses the results of the thermal comfort assessment 

research in two office buildings located in different climate zones in Croatia. In addition to 

standard equipment for measuring thermal comfort, the study employed wearable sensors to 

monitor the activities of eight occupants in order to calculate their metabolic rates. Furthermore, 

a survey questionnaire is used to investigate the occupants’ subjective thermal sensation. 

Collected information enabled the development of a model for predicting the dynimacly 

changes of metabolic rates of certain groups of people using artificial neural networks. The 

models were validated with a correlation coefficient of 90%. Implementing them could 

potentially increase occupant’s satisfaction and enable energy savings in office spaces. 

Moreover, the results showed that the metabolic rate (MET) response typically ranged between 

1.0 and 2.0 over the seasons, which is higher than the values for standard-based office activities, 

questioning the applicability of using static MET values in calculating the PMV index. Finally, 

the study analyzed the differences in thermal conditions between the two buildings and 

presented valuable insights regarding the age, gender and body mass index of the occupants in 

relation to their level of satisfaction with the comfort conditions. 
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Modeliranje intenziteta metabolizma korisnika uredskih prostora primjenom pametnih 

senzora u svrhu analize individualne toplinske ugodnosti 

 

 

Sažetak: 

Ovaj doktorski rad ispituje i raspravlja o rezultatima istraživanja procjene toplinske 

ugodnosti u dvije uredske zgrade smještene u različitim klimatskim zonama u Hrvatskoj. U 

istraživanju su uz standardnu opremu za mjerenje toplinske ugodnosti prostora, korišteni i 

prijenosni uređaji za praćenje aktivnosti osam korisnika zgrade kako bi se izračunao njihov 

intenziteta metabolizma. Također, korišten je i anketni upitnik za istraživanje subjektivnog 

osjećaja ugodnosti korisnika. Na taj način prikupljene su precizne informacije o dinamičkim 

promjenama u intenzitetu metabolizma korisnika zgrade tijekom radnog vremena. Ove 

informacije omogućile su razvoj modela za predviđanje stope intenziteta pojedinih skupina 

ljudi korištenjem umjetnih neuronskih mreža. Modeli su potvrđeni s koeficijentom korelacije 

od 90% što bi potencijalno moglo povećati zadovoljstvo korisnika i omogućiti uštedu energije 

u uredskim prostorima. Nadalje, rezultati su pokazali da se intenzitet metabolizma (MET) 

tipično kretao između 1,0 i 2,0 tijekom godišnjih doba, što je više od vrijednosti MET-a za 

uredske aktivnosti temeljene na standardima, dovodeći u pitanje primjenjivost korištenja 

statičkih MET vrijednosti u izračunavanju PMV indeksa. Naposljetku, provedena je analiza 

toplinskih uvjeta između dvije ispitane zgrade i predstavljeni su vrijedni uvidi u pogledu dobi, 

spola i indeksa tjelesne mase korisnika i odnosu s njihovom razinom zadovoljstva uvjetima 

ugodnosti. 

 

 

Ključne riječi: 

Toplinska ugodnost; zadovoljstvo korisnika; uredske zgrade; intenzitet metabolizma; višeslojni 

perceptron
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1. INTRODUCTION 

1.1. Motivation 

Even with notable enhancements in the energy efficiency of buildings, in most older 

buildings, built before the 2000s, there is a deviation of 18% between actual and designed 

building energy use [1]. Figure 1.1 shows a comparison between simulated (predicted) energy 

consumption modeled during the design phase and measured energy consumption in certified 

buildings in the USA. The created difference consequently affects the increase in electricity 

consumption in terms of heating and cooling, depending on the preferences of the building 

users, i.e. occupants [2]. 

 

Figure 1.1. Difference between the designed and the actual building energy use intensity [1] 

 

Due to the significant role that occupants play in managing the building in terms of 

improving the building’s energy efficiency, assessing and achieving their comfort is very 

important. A pleasant atmosphere has a positive impact on health performance and satisfaction 

of the occupants. Inadequate thermal environments, on the other hand, increase energy 

consumption as the occupants strive to bring their building occupancy into a state of their own 

comfort [2]. 

Moreover, occupant behavior in terms of the use of additional heaters and ventilators or 

simply window opening is generally recognized as an important factor which contributes to the 

uncertainty of building's energy performance [3] [4], because of its impact on the installed 

energy systems in the buildings [5] [6]. 
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Once it became possible to regulate indoor environments such as temperature, ventilation, 

and humidity through Heating, Ventilation, and Air-Conditioning (HVAC) systems, the 

demand for better indoor comfort conditions was raised [3]. Efficient thermal comfort 

regulation by HVAC systems is substantial for healthy indoor conditions and other facts like 

artwork preservation [4]. Still, on the downside, such systems receive feedback from the single 

point temperature measurement provided by a thermostat in order to switch on or off the 

heating/cooling [6] and thermal comfort can rarely be achieved in this way. 

Thermal comfort is the state of satisfaction with the thermal environment, which is 

influenced by thermal sensation. The thermal sensation vote (TSV) is thermal perception, 

defined as a conscious feeling commonly graded into the categories' cold, cool, slightly cool, 

neutral, slightly warm, warm and hot' [7] and is often the first step before estimating thermal 

comfort in practice [8]. By measuring and analyzing thermal sensation data through surveys or 

questionnaires, insights can be gained into how occupants perceive the thermal environment 

and whether it aligns with their comfort expectations. The connection between thermal 

sensation and thermal comfort lies in the fact that the perception of thermal sensation directly 

influences an individual's evaluation of thermal comfort. 

If thermal sensation is considered as a critical aspect of thermal comfort assessment, 

environments that promote well-being, productivity, and satisfaction for the occupants can be 

created. It helps ensure that indoor spaces are conducive to the needs and preferences of the 

people using them, leading to enhanced comfort and an overall quality of life. 

 

1.2. Standards regarding thermal comfort 

International standard ISO 7730:2008 [8] determines the “methods for predicting thermal 

sensations and degree of discomfort of people exposed to moderate thermal environments.” The 

range encompasses well individuals, both men and women, exposed to optimal thermal comfort 

but allowing for potential mild deviations. ASHRAE standard 55 [7] defines the thermal 

environmental conditions for human occupancy.  

Standard HRN EN 16798-1:2019 (EN 16798-1:2019) [9] specifies requirements for indoor 

environmental parameters for the thermal environment, indoor air quality (IAQ), lighting and 

acoustics. It specifies establishing these parameters for building system design and energy 

performance calculations. The thermal criteria used within EN 16798 are based on the 
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predefined Predictive Mean Vote (PMV), a heat balance model to determine the level of thermal 

comfort in air-conditioned buildings found in the ASHRAE 55 and ISO 7730 standards.  

The PMV model is a mathematical expression of the occupant's thermal sensation based on 

the body's thermal balance. It represents the difference between thermal energy in the human 

body and the amount of heat exchanged with the environment.  When the heat departing from 

the occupant surpasses the heat entering, the thermal perception is characterized as "cold." 

Conversely, if the heat entering the occupant outweighs the heat leaving, thermal perception is 

described as "warm" or "hot." In order for the occupants to feel comfortable, the PMV must be 

within the recommended limits (-0.5 < PMV < +0.5) for an interior. 

The initial data was gathered by exposing a significant number of individuals (reportedly 

many thousands of Israeli soldiers) to various conditions within a climate chamber. They were 

then asked to indicate their comfort level by choosing a position on a scale that best described 

their sensation of comfort. The result relates the size thermal comfort factors to each other 

through heat balance principles and produces the following sensation scale presented in Table 

1.1. 

Table 1.1. Thermal sensation of the subject within a moderate indoor environment, in a  

7-point scale reduced to 5-point questionnaire scale 

PMV TSV 
Questionairre 

values 

< -3.5 Very cold 
5 

-3.5 to -2.5 Cold 

-2.5 to -1.5 Cool 
4 

-1.5 to -0.5 Slightly cool 

-0.5 to 0.5 
Comfortable / 

Neutral 
3 

0.5 to 1.5 Slightly warm 
2 

1.5 to 2.5 Warm 

2.5 to 3.5 Hot 
1 

> 3.5 Very hot 
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The PMV index is obtained based on measured parameters, i.e. four environmental 

variables (air temperature, humidity, mean radiation temperature and air flow speed) and two 

personal variables (metabolic rate and level of clothing) described in Table 1.2. 

   Table 1.2. Parameters of PMV 

Name Symbol Unit Description 

Air 

temperature 
𝑡a °C 

Temperature of the air surrounding 

the occupant. 

Radiant 

temperature 
𝑡r °C 

The weighted average of all the 

temperatures from surfaces 

surrounding an occupant. 

Air 

velocity 
𝑣a m/s 

Rate of air movement given distance 

over time. 

The airflow is represented by the 

average wind speed. 

Relative 

humidity 

(RH) 

𝑅𝐻 % Percentage of water vapor in the air. 

Clothing 

insulation 
𝐼cl 

clo 

(clo = 0.155 (m2 K)/W) 
Thermal resistance value of clothes. 

Metabolic 

rate (MET) 
𝑀 

W/m2 

 

 

or 

 

met  

(metabolic equivalent of task) 

1 met is dimensionless unit 

equivalent to the energy 

expended per unit surface 

area of an average person 

seated at rest (58.2 W/m2) 

The energy expended from the 

human body during the specific 

activity (intensity of specific activity 

based on the amount of oxygen 

consumed during the activity). 

 

 

The energy expenditure of specific 

activity in relation to an individual’s 

resting metabolic rate. 
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In general, the PMV can be expressed as a function 1.1: 

𝑃𝑀𝑉 = 𝑓 (𝑡a, 𝑡r, 𝑅𝐻, 𝑣a, 𝐼cl, 𝑀)                                                   (1.1) 

PMV is arguably the most widely used thermal comfort index today. It is used as an explicit 

definition of the comfort zone. It can be calculated using the following equation [8]: 

              𝑃𝑀𝑉 = [0.303 ∙ 𝑒−0.036∙𝑀 + 0.028] {(𝑀 − 𝑊) − 3.05 ∙ 10−3 ∙

∙ [5733 − 6.99 ∙ (𝑀 − 𝑊) − 𝑝a] − 0.42 ∙ [(𝑀 − 𝑊) − 58.15] − 1.7 ∙ 10−5 ∙

∙ 𝑀 ∙ (5867 − 𝑝a) − 0.0014 ∙ 𝑀 ∙ (34 − 𝑡a) − 3.96 ∙ 10−8 ∙ 𝑓cl ∙

∙ [(𝑡cl + 273)4 − (𝑡r̅ + 273)4] − 𝑓cl ∙ ℎc ∙ (𝑡cl − 𝑡a)}                                       (1.2) 

where: 

𝑀 is metabolic rate of specific activity, i.e. energy expended from the human body [W/m2], 

𝑊 is the effective mechanical power [W/m2], 

𝑝a is the water vapour partial pressure [Pa], 

𝑡a is the air temperature [C], 

𝑓cl is the clothing surface factor, described as: 

𝑓cl = {
1.00 + 1.29 ∙ 𝐼cl, 𝐼cl ≤ 0.078 (m2 K) W⁄

1.05 + 0.645 ∙ 𝐼cl, 𝐼cl > 0.078 (m2 K) W⁄
                                              (1.3) 

𝐼cl is the clothing insulation [(m2 K)/W], 

𝑡cl is the clothing surface temperature [C], described as: 

                   𝑡cl = 35.7 − 0.028 ∙ (𝑀 − 𝑊) − 𝐼cl ∙

∙ {3.96 ∙ 10−8 ∙ 𝑓cl ∙ [(𝑡cl + 273)4 − (𝑡r̅ + 273)4] + 𝑓cl ∙ ℎc ∙ (𝑡cl − 𝑡a)}     (1.4) 

𝑡r̅ is the radiant temperature [C], 

ℎc is convective heat transfer coefficient [W/(m2 K)], described as: 

ℎc = {
2.38 ∙ |𝑡cl − 𝑡a|0.25, 2.38 ∙ |𝑡cl − 𝑡a|0.25 > 12.1 ∙ √𝑣ar

12.1 ∙ √𝑣ar, 2.38 ∙ |𝑡cl − 𝑡a|0.25 < 12.1 ∙ √𝑣ar

                        (1.5) 

𝑣ar is the relative air velocity [m/s]. 
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Predicted Percentage of Dissatisfied (PPD) by the ISO is "an index that establishes a 

quantitative prediction of the percentage of thermally dissatisfied people who feel too cool or 

too warm". It is dependent on PMV, as an increase in PMV, indicating departure from the 

neutral point (0), leads to an escalation in PPD as illustrated in Figure 1.2. The maximum level 

of dissatisfaction with comfort conditions occurs when PPD reaches 100% and, as you can 

never please all of the people all of the time, the recommended acceptable PPD range is 20% 

occupants dissatisfied with an interior space. Since PPD is the function of PMV, it can be 

defined as function 1.6 [8]: 

𝑃𝑃𝐷 = 100 − 95 ∙ 𝑒−0.3353∙PMV4−0.2179∙PMV2
                                     (1.6) 

 

 

Figure 1.2. Relationship between PMV and PPD based on [8] 

 

The global applicability of the PMV model has been discussed for a long time. It is argued 

that the controlled environmental parameters such as air temperature, air quality, velocity and 

relative humidity in laboratory experiments are unlike those in real buildings. Therefore, 

adaptations of the human body play a key role in determining subjective thermal sensation and 

perception.  

In practice, indoor temperatures are often regulated within narrower ranges than what the 

standards permit. An examination of 100 US office buildings revealed that during summer, 

temperatures tended to fall below the comfort zone, and, on average, were even cooler than 

temperatures observed in winter [10]. Overcooling appears to be a problem that is growing 

worldwide [11]. 

Furthermore, it has been claimed that the ISO 7730 [8], overestimates the occupant 

responses on the ASHRAE scale at high temperatures and underestimates them at low 
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temperatures [12] [13] which may lead to the use of more air conditioning than is necessary. 

Humphreys and Nicol [14] confirmed that the biases in PMV exceeds 0.25 scale frequently and 

reaches as much as one scale through meta-analysis. ignificant biases of this magnitude suggest 

that Predicted Mean Vote (PMV) might be inadequate in predicting thermal sensation [15]. The 

shortcomings of PMV in air-conditioned buildings are primarily attributed to errors in its input 

parameter [16]. One of the most common reasons PMV fails to estimate thermal sensation 

correctly is an inaccurate metabolic rate assessment. 

1.3. Metabolic rate – the factor of the individual difference 

Of the six basic parameters in the mentioned PMV model of thermal comfort, the metabolic 

rate (MET) is probably the most important yet underestimated in research and practice. The net 

heat production of a person must be continuously distributed and regulated to maintain a normal 

body temperature. An adult person produces about 100 W of heat in a state of rest [14]. As most 

of the heat is transferred to the environment through the skin, for practical reasons, metabolic 

activity is characterized as heat production per unit skin area. A person at rest has 58 W/m2, or 

a metabolic intensity of 1 met [14]. A higher MET is expressed in relation to the state of rest. 

For example, a person walking will have 3 feet more than a person at rest (3 met). People have 

different metabolic rates that can fluctuate due to activity level and environmental conditions 

[17].  

It has been experimentally confirmed that accurate input of MET can effectively improve 

PMV for thermal sensation prediction [18][19]. Conversely, misestimation of MET can also 

lead to an error in predicting the occupant's thermal comfort. A change of 0.1 met will cause a 

change in the occupant's thermal sensation equivalent to a change in air temperature of 1 C, 

and a change in MET of 0.4 met will cause a change of at least 2.5 C [20][21]. Luo et al. [22] 

concluded that an increase in MET from 0.9 MET to 1.5 MET corresponds to more than a 2°C 

variation in predicted neutral temperature and approximately a 1.5 unit difference on the PMV 

scale.  

Figure 1.3 shows how MET affects PMV when the clothing level is 1 clo. A change in MET 

from 0.9 met to 1.5 met results in a variation of approximately 1.5-unit difference in PMV at 

the thermally neutral temperature (the temperature when comfort is achieved and PMV is equal 

to 0). 
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Figure 1.3. Metabolic rate effect on PMV [21] 

The variability in MET among occupants is influenced by individual differences, such as 

race, gender, age, weight, and other personal factors. [20]. An illustrative instance of analyzing 

individual differences is presented by Kingma and Marken Lichtenbelt [23], who observed a 

metabolic distinction between genders. Their findings suggested that men exhibited a higher 

MET, implying that the global practice of overcooling buildings may prioritize the comfort of 

men at the expense of women's comfort. Another study byand Arens [24], utilizing data from 

the US Army, revealed that females typically experienced 10-30% lower metabolic rates 

compared to males with the same heart rate. The reduced metabolic rates observed in females 

can be linked to variations in the percentage of fat-free mass. Heat production per unit in fat-

free mass tends to be higher compared to that in the body's fat tissue, contributing to this 

difference in metabolic rates. [25]. Typically, females tend to possess a higher fat percentage 

and lower muscle mass compared to males at an equivalent body mass index (BMI) [26]. As 

fat-free mass is considered the primary determinant of basal MET [27], noticeable variations 

between the sexes might be observed across all activity levels except walking at a speed of 4.0 

km/h. However, the MET for walking at this speed showed no significant difference between 

the sexes due to considerable variability in the measurements [28].  

Body shape is another contributing factor impacting differences in MET. As mentioned 

earlier, heat dissipation is contingent on the body's surface area. A taller and slender individual, 

possessing a larger surface-to-volume ratio, can disperse heat more effectively, enabling them 

to endure higher temperatures compared to someone with a more rounded body shape.[29]. An 

examination based on BMI indicated that MET tends to increase with higher BMI. In general, 

there is a positive correlation, meaning that as BMI increases, so does the MET value. However, 
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when it comes to sitting and eating activities, according to Na and Kim [30] the higher the BMI, 

the lower the MET.  

Regarding the race factor, Qi et al. [31] compared the respiratory CO2 production between 

Chinese and Western, and reported that respiratory CO2 production in 44 Chinese subjects was 

observed to be 15% lower than the values predicted by the empirical formula established for 

Western populations.  

Furthermore, some studies [28] indicate that the existing international standards tend to 

slightly overestimate the MET for young and older adults performing office activities. Studies 

[21] [32] [33] found discrepancies in the heat balance or preferences for higher or lower 

temperatures between the young people and the old ones. There is an effect related to personal 

parameters (i.e. they show a lower activity level, and thus MET, than younger). The traditional 

thermostat lacks the capability to measure and control HVAC systems based on the actual 

thermal sensation of the end-user. Consequently, the resulting HVAC control may not 

accurately reflect the real thermal comfort experienced by individuals, potentially leading to 

increased energy consumption for climate control or the creation of unsuitable indoor 

environments.  

In their research, Zhai et al. [34] claimed that ISO and ASHRAE standards overestimate 

MET for sitting and standing activities by 10-20%, and underestimate MET for walking 

activities by 5-9% in ISO, and by more than 20% in ASHRAE. The study results of Gauthier 

and Shipworth [35] indicate that current standards overestimate winter clothing insulation by 

22% but underestimate residential metabolic activity by 9%. 

Interestingly, both the ISO and ASHRAE standards primarily rely on data from the 1967 

Passmore and Durnin review [36] on energy expenditure, which involved European and North 

American subjects. The MET tables in these standards have not been revisited or revised since 

then. Moreover, the sedentary rate of 58 W/m2 (1 MET) is based on an average male European 

with a skin surface area of about 1.8m2. Given that metabolic rates can be influenced by ethnic 

and geographical factors [37], utilizing the same MET values for diverse genders, ages, 

ethnicities, geographical backgrounds, and body compositions might lead to potential 

systematic errors. Therefore, it's essential to validate the MET specifications in current 

standards through human subject tests conducted in various geographical locations and among 

different groups of people. 
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Moreover, these standards are suitable for static, uniformly thermal conditions and are based 

on the hypothesis that regardless of their individuality, human beings are thought to feel 

comfortable in a narrow, well-defined range of thermal conditions [38]. 

The reviewed field studies confirm that this personal variable is often estimated with a great 

degree of error. Considering that this variable is the most influential one, this high level of error 

will undoubtedly reduce both the accuracy and precision of the results of the predictive models 

[35]. To overcome this, methodological modifications must be made concerning MET. Thus, 

the next chapter is about the standard which presents the methodology for MET determination. 

 

1.4. Research overview  

ISO Standard 8996:2021 [39] specifies methods to determine MET as a function of 

ergonomics of the thermal environment in different working climates. The standard ascertains 

the MET estimation in the context of the task requirements from the following: the body 

segment involved in work, the workload from that part of the body, the body posture and the 

working speed. The overall MET for a work cycle can be calculated using equation 1.7: 

𝑀 =
1

𝜏
∑ 𝑀𝑖 𝜏𝑖                                      

𝑛

𝑖=1

                                     (1.7) 

where: 

𝑀 is the average metabolic rate for the work cycle [W/m2], 

𝑀𝑖 is the metabolic rate (MET) for activity 𝑖 [W/m2], 

𝜏𝑖 is the duration of 𝑖-activity [min], 

𝜏 is the duration of the work cycle and represents the sum of the partial durations 𝜏𝑖 [min]. 

 

The Standard ISO 8996 [39] can also be used for other applications, such as the energetic 

cost of specific jobs or the total energy cost of an activity. The standard provides guidance on 

the level of accuracy one could expect with each method described in Table 1.3 and data refer 

to standard persons male 70 kg, 1.70 m, 1.8 m2 body surface area; female 60 kg, 1.60 m, 1.6 

m2). It provides fundamental support to ISO thermal comfort and other standards and sets four 

levels of increasing accuracy for estimating MET. 
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Table 1.3. Methods for determining metabolic rate [39] 

Level Method 

1. Screening simple categorization of workload 

2. Observation metabolic rate is estimated by a time and motion study 

3. Analysis 
metabolic rate is estimated from heart rate recordings or 

accelerometers measurements 

4. Expertise 
sophisticated techniques for measuring rate of oxygen 

consumption 

 

 

Level 1 represents basic classification of tasks. These range from general descriptions 

(resting, low, moderate, high, very high) to specific descriptions of occupations which are 

described in tables of metabolic rates. However, this method today is rearly used for the great 

risk of error. Brighenti-Zogg et al [40] confirmed that the average is misrepresenting the actual 

physical work demands of specific occupational groups, and that it does not account for  

gender-related differences in relative workload.  

Level 2 is another method with the use of tables, where estimates are provided based upon 

a description of activity. The examiner assesses the subject's activity (e.g. sitting, standing or 

walking) via a questionnaire and then looks at the table to obtain the corresponding metabolic 

rate value. ASHRAE Standard 55 [7] provides a table of MET rates for a variety of activities. 

Table 1.4. Some common values of MET rates for a variety of activities [7] 

MET ACTIVITY 

0.7 sleeping 

1.0 a seated and quiet position 

1.2-1.4 light activities standing 

2.0 activities that involve movement 

< 2 lifting heavy loads or operating machinery 
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This method is simple, suitable for implementation and does not require high financial 

expenses, so it is widely used in studies of thermal comfort.  

However, when calculating the PMV value according to the activity diary, the metabolic rate 

obtained under a certain activity level is constant. On the contrary, occupants' metabolic rates 

change over time during the working day. Thus, the real-time changes in metabolic rate are 

caused by moving around, changing postures, engaging in different jobs, and exposing to 

different environments. Therefore, the method of assuming a constant value for the metabolic 

rate may not be sufficiently accurate to sustain precise thermal comfort modeling [41]. 

Liu et al. [42] researched occupant’s clothes type, activity type, skin temperature, and clothes 

temperature extracted by vision-based procedures. They used a thermal camera to track the 

subjects, their movement, and their level of clothing and then recorded the metabolic intensity 

values from the tables for a certain time. Based on these input data, they created a model using 

a convolutional neural network (CNN) that would determine MET values in the everyday life 

of the subjects.  

However, Havenith [43] indicated that the Level 2 methods have an error of up to 20% in 

obtaining MET. Similarly, Broday et al. [18] compared MET tables with real-time 

measurements and concluded that there is a significant difference of up to 20 W/m2  between 

the measurements and tables. 

Level 3 has been investigated by most authors due to its practicality and high level of 

accuracy. Given the availability and commercial use of sensor devices for measuring heart rate 

and activity, many studies have used smart bracelets and smart watches to determine subjects' 

metabolic rates. In their work, Vhaduri and Poellabauer [44] tested the Fitbit device based on 

three criteria: (1) accuracy (2) access to raw data to support research and (3) practicality of 

Fitbit wearing 24 hours a day. The test results, in line with the work of Liu et al. [45], showed 

that the device does not measure parameters with acceptable accuracy for this kind of research. 

However, the practicality of wearing the device was satisfactory. In terms of data access, the 

device collects heart rate data only when it is actually worn, while on the other hand, it collects 

activity data all the time, even when it is not being worn. Therefore, before using activity data, 

the researchers must remove "invalid" periods of activity minutes that do not coincide with 

heart rate measurement. 

Sugimoto [46] used a sensor system to measure biological and activity data in daily life. The 

system consists of a temperature sensor worn in the ear, a skin temperature sensor, an 
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electrocardiography (ECG) sensor with a tri-axial accelerometer and thermo-hygrometers. 

Based on the obtained values, as well as the temperature and humidity values in the room, he 

developed a Markov model for determining the degree of the subjects' satisfaction. Although 

neural networks proved to be an excellent tool for modeling, in this particular research no 

questionnaires were used that would give the relevance of satisfaction with thermal conditions. 

Hence, it is not clear on what basis the subjects' comfort was estimated. In this direction of 

modeling the MET, Na et al. [47] built two models, a self-evaluation model of MET value using 

neural networks and a third-party evaluation model based on collected data. The authors did a 

pilot study on a smaller sample which they extended afterward [48] by investigating the 

influence of gender and BMI on MET values during various activities. The shortcoming of their 

research is the measuring equipment used, which consists of an aforementioned Fitbit device 

for heart rate measuring and a Kinect camera for movement tracking. The latter's disadvantage 

is the possibility of accurately assessing the activity when the subject is outside the recording 

angle or obscured by an object or person in the room. 

The number of new research investigations using this methodology proves that the 

determination of the metabolic rates by Level 3 is still insufficiently investigated. For example, 

in 2020, Zhang et al. [41] experimented by measuring the subjects' metabolic rates during 

walking. Subjects walked around the hall at different speeds while their heart rates were 

measured with a 3XMSH05HM smart bracelet. However, the individual characteristics of the 

respondents were ignored during the research. Özbey et al.[49] went a step further. In 2021, 

they measured the heart rate in order to model the MET by multivariable nonlinear regression 

analysis (MNLR) in MATLAB on a large number of subjects, 21 men and 17 women, with 

different individual characteristics. 

Although, the heart rate measurement can provide an accurate MET estimation, the need for 

continuous measurement has made this method inapplicable in real-world scenarios [50]. Also, 

there is a possibility of an error occurring during the measurement due to the inconsistent 

emotional/psychological state of the subject [47]. Furthermore, when measuring heart rate 

based on PPG (changes in heart volume), artifacts can appear in the signals, which are unusual 

occurrences in the measured data that distort the results of the study [51]. In order to minimize 

artifacts caused by human movements from the collected pulse signal, it is also necessary to 

remove noise during data analysis, which further complicates the data analysis [52]. 
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An individual's heart rate is considered to be a composite of various components. Typically, it 

exhibits a linear relationship with metabolic heat production for heart rates surpassing 120 beats 

per minute. However, since this level of heart rate is uncommon in settings where comfort is 

commonly assessed (an average heart rate of 120 beats/min implies work levels beyond typical 

office work), it may be considered beyond the scope of this investigation. 

A recently proposed approach to activity recognition, grounded in a novel learning scheme, 

significantly diminishes the need for extensive annotation. This strategy adeptly harnesses 

sparsely labeled data in conjunction with readily accessible unlabeled data to enhance 

effectiveness [53]. 

The energy expenditure (EE) measurement of the subjects for the MET assessment is attracting 

the most attention [54] considering that MET, as already stated, is defined as the ratio between 

the energy intensity of activity and the reference rate of MET in the state of rest. In the review 

of papers so far, EE was mainly researched for medical purposes.  

In 2015 Mukhopadhyay [55] reviewed the systems for monitoring human activity using 

wearable sensors have been documented, along with identified challenges that need to be 

addressed to overcome the associated issues. Back then, devices were of low accuracy and very 

expensive. Regardless, he predicted an increase in interest and consequent usage of wearable 

motion devices, so the cost of the devices would fall, resulting in wide application in society. 

Gauthier and Shipworth [35] utilized various methods to estimate metabolic rate and clothing 

insulation, including visual observations as well as environmental and wearable sensors. The 

specific wearable sensor they employed was the SenseCam, manufactured by Vicon Motion 

Systems (Microsoft, UK). This device consisted of a tri-axial piezoresistive accelerometer 

(Kionix KXP84), a light intensity sensor, and a temperature sensor. The sampling frame for 

their study was determined based on three physiological attributes outlined in Standard [39], 

namely gender, age, and weight. As the monitoring was carried out on the chest, they only 

measured the thermal insulation level of the upper body. The thermal insulation value for the 

lower body was considered constant at 0.3 clo. The study took place only in the period of 10 

consecutive days during the winters of 2012 and 2013. 

In their work, Zhu et al. [56] focused on the accurate estimation of EE for monitoring 

ambulatory activities (walking, standing, climbing up or down stairs) of subjects wearing 

portable sensors. They used CNNs to automatically detect important features from data 

collected by wearable sensory devices. Such a promising new approach could be applied to 
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investigate changes in metabolic rates of the occupants in office buildings during working hours 

and its impact on their thermal comfort. 

Level 4 includes direct and indirect calorimetry [57]. Direct calorimetry measures the total 

amount of directly released heat from the body to the environment with complex equipment 

and complicated operations [58]. Indirect calorimetry calculates the MET from inhaled oxygen 

and exhaled carbon dioxide. It requires an analysis of the person's expired air. For this purpose, 

this either needs to be collected throughout interest using a 'Douglas bag' and analyzed 

afterward or directly analyzed using portable equipment. The primary challenge lies in 

abstaining from disrupting the task being measured and mitigating issues related to leaks, 

experimenter variability, and calibration. The duration for collecting expired air depends on the 

context. In the case of light to medium work, the collection is typically done throughout a 

representative period of the activity, employing the partial method. For this method, the MET 

[W m-2] is calculated from function 1.8 [43]: 

𝑀 = 𝐸eq ∙ �̇�O2
∙

1

𝐴D
                                                               (1.8) 

where: 

𝐸eq is the energy equivalent [W h l-1 of oxygen], typically around 5.7 W h l-1 for light work, 

�̇�O2
 is the oxygen consumption (l h-1), 

𝐴D is the Dubios, body surface area [m2], described as: 

𝐴D = 0.202 ∙ body weight
0.425 ∙ height

0.725                                    (1.9) 

 

Luo et al. [22] sed the Vmax Encore metabolic cart (SensorMedics, USA) to measure oxygen 

consumption and carbon dioxide production in the human body. Then they developed equations 

to determine the intensity of the subject's metabolism while ignoring the subject's age, gender, 

and BMI. On the other hand, Nomoto et al. [28] developed a more accurate equation for 

determining metabolic intensity. They first conducted a 3D measurement of the human body 

surface area to determine the appropriate formula to estimate the subject's body surface area 

accurately. Metabolic intensity rates were then calculated by dividing the subject's heat 

production (measured by indirect calorimetry) by his/her body surface area. Since indirect 

calorimetry requires people to wear uncomfortable masks, it is also inconvenient for practical 

application. 
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Consequently, some researchers have attempted to develop methods of approximating MET 

values that do not involve expensive equipment and are complicated to use. For example, Ruiz 

et al. [59] presented a method of rough estimation of subjects' MET values by calculating CO2 

concentration and assessing IAQ. However, such a method of measuring CO2 concentration is 

limited because the interior space needs to be entirely sealed. Nevertheless, these parameters 

proved important for occupants' satisfaction with thermal conditions and need further 

investigation. 

In addition to the methods prescribed by the standards, some authors have developed 

empirical methods for determining the MET. Thus, Dimara et al. [60] created an algorithm that 

calculates MET based on the personal assessment of the subject's thermal sensation considering 

the current conditions in the environment through numerous survey questionnaires. In this case, 

the MET is a function of air temperature, relative humidity, and level of clothing, as well as the 

subject's thermal sensation. In this way, profiles were created for precisely determined 

respondents that do not apply to anyone below them, and the survey procedure must be repeated 

for every other respondent or space occupant. Also, Zhang et al. [15] proved the linear 

dependence of MET and environmental conditions and, in their work, went so far as to omit 

MET from the PMV model completely; that is, they replaced it with the sum of temperature 

and air velocity in the room corrected by three constant coefficients (𝑀 = a 𝑡r + b 𝑣ar + c) and 

included the PMV index calculation as such.   

Kingma et al. [23] used a biophysical analysis to illustrate the effect of incorrect metabolic 

rate calculation of the thermal comfort of women. The approach fundamentally differs from 

current thermal comfort models and builds predictions based on physical and physiological 

constraints rather than statistical associations with thermal comfort. It is unclear from the paper 

how the MET values were collected, nor whether dynamic changes were monitored during the 

day. 

From the literature review of previous research in this area, it can be concluded that the 

methods commonly used in comfort research to determine MET have some inaccuracies, partly 

due to a lack of detailed descriptions for tasks relevant to assessing comfort. The range of tasks 

and MET levels typically considered in comfort assessment is relatively limited compared to 

the wide range of possible activity levels. The existing culture surrounding the measurement of 

metabolic heat may not be suitable for evaluating thermal comfort.  
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In order to enhance the estimation of MET according to ISO 8996, it is necessary to gather 

more data and provide greater detail for activities with a metabolic rate below 2 met. A large 

amount of human biometric data is needed along with environmental data from an environment 

under different conditions in order to conduct a thorough investigation of thermal comfort 

parameter MET and to find out what affects changes in its rates. 

Hence, it is necessary to develop a model using neural networks based on input data of the 

physical activities of users of office spaces. Namely, by monitoring the user's activity inside the 

building with special portable non-invasive sensors, MET can be calculated from the energy 

expenditure of the user, and its dynamic changes during a typical working day can be 

monitored. Additionally, by measuring the environmental conditions of office spaces and 

monitoring user satisfaction with a questionnaire, it is possible to more precisely determine the 

PMV index, which would improve the thermal comfort of building occupants with an installed 

HVAC system, and consequently influence the minimization of the building's energy needs. 

1.5. Hypothesis 

It is possible to analytically model the occupant’s metabolic rate as a function of the 

measured thermal conditions in the office building (relative humidity, air temperature and 

amount of carbon dioxide) without the use of an additional activity monitoring device.  

It is possible to determine the value of thermal comfort metabolic rate parameter by 

applying a specific model of occupant’s metabolic rate depending on the individual (personal) 

characteristics, which statistically significantly affect (changes) metabolic rate values. 

 

1.6. Content and thesis organization 

Chapter 01 describes the motivation for this particular Ph.D. topic of thermal comfort and 

why it is interesting and important to be further investigated. The terms and standards currently 

in force concerning thermal comfort and MET assessment are explained. A research overview 

was given to see how other researchers approached this problem, in what way and by which 

devices and methods they assessed MET, how successful they were in their research, and how 

much they contributed to MET assessment in general. The conducted review clearly identified 

the present research gap. In Chapter 02 research methodology is described. A preliminary 

investigation was conducted in the form of questionnaires to determine which of the thermal 
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comfort parameters of the working environment are statistically significant for office space 

occupants to reach the state of comfort. In light of the outcomes derived from the statistical 

analysis of the occupant votes, devices were selected for further (in-depth, year-round) research. 

Further (year-round) research was conducted in 2 office buildings of the same type, in 2 

locations with different climatic conditions. The MET of each occupant was obtained using the 

sensor and the statistically significant parameters on which it depends were determined (by 

analyzing the measured data) in such a way that the change in the MET of each user during 

different thermal conditions was considered. Additionally, the survey analysis determined 

individual thermal comfort parameters that statistically influenced the change in MET. Based 

on the above, a model was developed for obtaining MET (without the need for its daily 

measurement using the sensory device). In Chapter 03 obtained results and discussion of this 

research investigation were given, while the obtained scientific contributions were given in 

Chapter 04. In Chapter 05 conclusions were made along with the plan for the future research 

work in this topic.  
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2. EXPERIMENTAL APPROACH AND RESEARCH METHODOLOGY 

In order to confirm the first working hypothesis, an experimental measurement of thermal 

conditions on the premises was carried out during working hours throughout the year in two 

buildings of different geographical locations and climate zones. 

The measuring equipment is selected according to the results of statistically significant 

parameters of thermal comfort gain by a preliminary study described in Chapter 3.1 of this 

thesis. Furthermore, in order to determine the statistically significant individual parameters that 

affect the MET values of building occupants, a survey questionnaire (Appendix) is conducted 

three times a day during the periods of measurement. 

Additionally, the wearable device is used for monitoring the occupant's activity. The 

obtained data are used for calculating the MET through its software on a minute level. Their 

further comparison with the survey questionnaires' answers results in statistically significant 

individual characteristics of occupants that affect changes in the MET value. The above enabled 

the grouping of occupants with common characteristics and comfort preferences.  

Ultimately, for each group of people, a mathematical model is created using neural networks 

based on the input parameters of thermal conditions that have been shown to have a statistically 

significant effect on occupants' MET. The models are created using the computer program 

package MATLAB R2018.  

The difference between the actual output value and the predicted value obtained by the 

artificial neural network (ANN) model represents the evaluation of the prediction accuracy rate 

of the developed model. A satisfactory ANN model should have a correlation coefficient greater 

than 0.8 and a mean square error as close as possible to 0.  

In this section, a detailed description and general concept of the research methodology 

(Figure 2.1) as well as experimental setup will be described in detail in continuation. 
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Figure 2.1. Research methodology 

 

2.1. Climate conditions for geographical locations 

The examined buildings are located in two different climatic zones. Distribution of climate 

types are given according to Köppen [61]. The climate of Building A (Split) is Mediterranean 

(Csa), with mild, rainy winters and hot, sunny summers (Table 2.1 and Figure 2.2). From 

December to February, the winter in this region is generally mild, marked by intervals of 

sunshine interspersed with episodes of inclement weather. However, occasional very cold days 

may occur when air masses from the interior of the Balkan Peninsula are ushered in by the Bora 

wind. During such periods, nighttime temperatures can drop to -6 °C or -7 °C, while daytime 

temperatures hover around freezing or slightly below. Light snowfall, usually not abundant, 

may also occur. 
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In contrast, the summer months of June to August bring hot and sunny weather, occasionally 

accompanied by afternoon thunderstorms, with a higher likelihood of rain in June. The impact 

of the nearby sea is somewhat diminished by islands that separate the city from the open sea. 

Consequently, the region may experience prolonged and intense heatwaves, with temperatures 

reaching highs of 34/35 °C and beyond. In Split, the average temperature in the coldest month 

(January) is 8.3 °C, while the warmest month (July) averages 26.9 °C. The highest relative 

humidity (RH) is in November (69%), the most rainfall month in Split (around 11 to 12 days). 

On the other hand, the month with the lowest RH is July (48%), with around 3 to 4 days of 

rainfall. 

Table 2.1. Climate conditions in Split during the year [62] 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Avg. temp. 

[C] 
8.3 8.6 11.4 15.0 19.9 24.1 26.9 26.9 21.8 17.6 13.1 9.4 

Min. 

temp. [C] 
5.9 5.9 8.4 11.7 16.2 20.2 22.8 22.8 18.3 14.7 10.7 7.0 

Max. 

temp. [C] 
10.7 11.4 14.4 18.3 23.6 28.0 31.0 30.9 25.3 20.4 15.5 11.7 

Avg. RH 

[%] 
64 61 59 60 59 55 48 50 58 66 69 65 

 

 

Figure 2.2. Climate chart, Split 
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The Building B (Zagreb) climate is classified as Ctb, warm and temperate (Table 2.2 and 

Figure 2.3). The rainfall in Zagreb is significant, with precipitation even during the driest 

month. The average annual temperature is 11.6 °C in Zagreb. Zagreb is located in the northern 

hemisphere. Summer begins in June and ends at the end of September. The temperatures are 

highest on average in July, at around 22.5 °C. At 0.5 °C on average, January is the coldest 

month of the year. The variation in annual temperature is around 22.0 °C. The month with the 

highest RH is December (84.04%). On the other hand, the month with the lowest RH is August 

(63.66%). The month which sees the most rainfall is May (8.47 days), while the driest month 

of the year is February (11.97 days) [61]. 

Table 2.2. Climate conditions in Zagreb during the year [63] 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Avg. temp. 

[C] 
0.5 2.0 6.6 11.8 16.2 20.4 22.5 22.2 16.9 12.0 6.9 1.8 

Min. temp. 

[C] 

-

2.8 
-2.0 1.5 6.3 10.7 15.0 17.1 17.0 12.5 8.0 3.6 -1.2 

Max. temp. 

[C] 
4.3 6.5 11.9 17.0 21.2 25.2 27.4 27.3 21.5 16.5 10.7 5.3 

Avg. RH 

[%] 
81 76 71 67 69 67 64 64 72 78 83 84 

 

 

Figure 2.3. Climate chart, Zagreb 
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2.2. Technical description of buildings under field investigation 

A study on occupant thermal comfort is carried out in two standard public office buildings 

in Croatia through field investigation. The first building (Building A) is the Faculty of 

Mechanical Engineering, Electrical Engineering and Naval Architecture (FESB), Figure 2.4, 

located in Split, Croatian coast. It is an educational and research building, housing on average 

300 employees. It consists of two connected buildings, the old and the new one, which together 

cover an area of 29,477 m2. While the old part of Building A has double-pane wooden windows, 

with inner and outer blinds, the new part of the building has double-pane aluminum windows 

with outer blinds.  

 

Figure 2.4. Building A 

Heating for the old part of the building is accomplished through a 1,400 kW oil-fired boiler, 

with an average yearly consumption of 342 tons of oil. This part of the building is not 

sufficiently insulated according to Croatian National Legislation on Rational Use of Energy and 

Heating Protection in Buildings [1]. In contrast, the new part of the building is sufficiently 

insulated according to the current standards. The building has a central heating and cooling 

(HVAC) system installed. The maximum simultaneous cooling load is 1,400 kW, while the 

daily energy consumption is 11,938 kWh. To reduce the required cooling capacity and the 

amount of electrical energy involved, the cooled tanks are installed. The stored cooling energy 

of 3,333 kWh allows two heat pumps of 382 kW basic cooling capacity to cover the cooling 

needs completely. During the winter, the heat pumps have a single effect of 415 kW and are 

used only when the outdoor air temperature is above 5C. Both parts of the building have a lot 

of natural light, but there are also fluorescent tubes installed in every room.  

The office space was 5 m length x 3.4 m width x 3.4 m height (Figure 2.5). The inquiry was 

conducted in office spaces located in the old section of the building. The heating season for 
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Building A spans from October to the end of March. The cooling season begins in June and 

extends until the end of July, resuming from mid-August to the end of September, with a 

temporary hiatus during collective vacation.  

 

Figure 2.5. Floor plan of Building A with the offices and their basic dimensions marked 

 

The second building facility (Building B) is located in Zagreb, inland Croatia. It is a HEP 

ESCO d.o.o. building housing around 30 occupants, (Figure 2.6). Constructed during the 1960s, 

the building was also built without adequate thermal insulation for its structure. Building B’ 

office spaces are also of similar dimensions as in the Building A. 

 

Figure 2.6. Building B 
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Building B utilizes the district heating system, employing radiators for heating needs. 

Additionally, each office is equipped with split heat pump units for cooling purposes. In Zagreb, 

the heating season spans from October to May, longer than in Split, while the cooling period 

lasts from June to September. 

Both buildings share comparable constructional features and heating/cooling systems in 

their office units, facilitating an effective comparison of the results.  

In Building B, the cooling season started on June 1 and ended in September. Split air 

conditioners are used to cool the building, which is installed in each office, and the users of the 

rooms use them according to their personal preferences. The heating season started on October 

and ended in May. 

 

2.3. Period and conditions of measurement  

The measurements were taken in four communal office spaces (two within Building A and 

two within Building B) over the course of a year, each conducted four times during a 

consecutive workweek (spanning five working days), Table 2.3. All operational cycles, 

encompassing the different seasons of the year (spring, summer, autumn, and winter), were 

taken into account. The measurements were obtained during a typical working day from 7:30 

in the morning to 15:30 hours. The measurement of both buildings was carried out in the same 

period of the year with a gap of several days between the two buildings due to the use of the 

same measuring equipment.  

As previously mentioned, motion (presence), air temperature, humidity, and CO2 levels, 

along with data from wearable sensors, were recorded at one-minute intervals. Regarding 

adaptation strategies, occupants had the option to adjust the thermostat, open windows, and use 

additional heaters and fans in offices.  

These adaptive strategies did not impact the measurements as the primary focus of this study 

was not to calculate precise energy consumption. 
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Table 2.3. Measurement period  

Measurement Building A Building B 

First Apr 24 – Apr 30 May 22 – May 28 

Second Sept 04 – Sept 10 July 03 – July 09  

Third Nov 06 – Nov 12 Dec 04 – Dec 10  

Fourth Jan 29 – Feb 04 Jan 08 – Jan 14 

 

 

2.4. Measuring equipment 

2.4.1. Sensors for thermal conditions measuring 

As preliminary research results showed (more detail about it in the Subchapter 3.1), the 

statistically significant parameters affecting occupants’ personal thermal comfort are 

temperature and air quality. Hence, the measurement equipment was chosen accordingly. 

Thermal comfort conditions were monitored using a motion sensor Motion110 [64] (Figure 

2.7a and Table 2.4) and air-quality datalogger TROTEC BZ30 [65] (Figure 2.7b and Table 2.5). 

The precision of the utilized measurement equipment is outlined in Table 2.6, indicating that 

the measurement error is sufficiently minimal and has negligible impact on the results.  

 

 

 

 

 

 

Figure 2.7. Research equipment: 

a) Motion110 Data Logger, b) TROTEC BZ30 Data Logger 

  a)                                  b)                                            
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Table 2.4. Technical specification of motion sensor 

Detection Distance 5 m 

Detection Range >80° 

Time Resolution 1 second (reading rate dependent) 

Memory 13,107 

LED Indicator Red 

Required Interface Package IFC110 or IFC200 

Typical Battery Life 5 years typical at 25 °C 

Baud Rate 57,600 

Operating Environment 20 °C to +60 °C, 0 to 95% RH non-condensing 

Table 2.5. Technical specification of air-quality datalogger 

Sensor NDIR (nondispersive infrared) CO2-sensor 

Measuring range 0 – 9,999 ppm CO2 

Resolution 1 ppm 

CO2 accuracy ±75 ppm or ±5% of the measured value 

Temperature range 23 °F – 122 °F (-5 °C – 50 °C) 

Resolution 0.1 °C/°F 

Temperature accuracy ±1 °C 

Relative humidity (RH) 0.1 to 99.9% 

Resolution 0.1% RH 

Accuracy of the RH ±5 % 

Display date and time, RH, temperature, Max/Min, CO2 value 
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Table 2.6. Experimental equipment accuracy 

Sensor type Measurement error 

Temperature (air) ±1.0 °C 

CO2 level ±75 ppm 

Air humidity ±5% 

 

2.4.2. Wearable devices for metabolic rate assessment 

In addition to monitoring overall thermal comfort conditions, the measurements from 

wearable sensors gather data related to individual (personal) comfort, taking into account 

occupant activity.  

The sensors were selected based on three criteria [45]: 1) accuracy; 2) raw data access for 

research support; 3) convenience to wear 24/7. 

Wearable devices for sensing activity come in a wide range with different approaches to 

processing the raw acceleration data. Unfortunately, there is no standard for data processing, 

leading to a lack of standardized output variables. Consequently, data processing varies by 

company, making it nearly impossible to compare devices from different companies. Therefore, 

capturing and storing data in a unique storage format is recommended before processing it to 

obtain information. Raw data as output variable; the unprocessed/unfiltered raw acceleration 

signal of each axis (direction: x, y, z; unit: mg) are favored [66] [67] [68]. Hence, there is the 

possibility to recompute parameters, such as EE, at a future date using updated algorithms and 

methodologies. It is important because the MET may be presented as a MET value, 

corresponding to a linear relationship to energy expenditure. An activity with a metabolic rate 

of 2 met has twice the metabolic rate of a 1 met activity [69]. 

As per the estimation of EE, after filtering the raw data, many devices use linear regression 

models. Single regression models are recognized for their tendency to either overestimate or 

underestimate EE because of the non-linear correlation between activity and EE. For instance, 

the extra load on the body, such as pulling or pushing, remains challenging to accurately 

measure [66]. Consequently, there is no single regression model deemed suitable for estimating 

EE. Therefore, the appropriateness of employing linear regression models is questionable [70]. 
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Demonstration revealed that an activity-based regression model is beneficial and provides 

increased accuracy [71].  

Based on these suggestions, a sensor that records and saves the raw data from the triaxial 

acceleration signal movements Move 3 sensors were chosen for the research. The sensors 

from movisens utilize a triaxial accelerometer for activity recognition. The acceleration data is 

categorized into pertinent activity classes before undergoing additional processing. 

Subsequently, a suitable algorithm for the respective activity class is chosen. This method offers 

advantages over other devices and yields a more precise estimation of EE compared to 

alternative devices [72] [73] [74]. 

To improve EE estimation, the movisens Move 3 sensors incorporate a barometric sensor to 

evaluate variations in altitude. A notable limitation of many commonplace accelerometers is 

their lack of precision in estimating energy expenditure during incline ascent or descent, 

particularly on stairs. This challenge arises from the similarity in walking patterns between 

walking on an incline or stairs and walking on a flat surface [72] [71]. The inclusion of the 

barometric sensor substantially enhances the accuracy of EE estimation. Movisens Move 

3 sensors were evaluated with a mean classification rate of 98.2% [75]. The precise 

categorizations of activities result in an enhanced estimation of EE.  

In comparison to questionnaires, activity sensors (accelerometers) offer the advantage of 

capturing movement in real-time as it occurs. Conversely, traditional forms entail a delay in 

documenting physical activity. Thus, a sensor-based system offers advantages in minimizing 

systematic errors when compared to traditionally timed forms. The movisens Move 3 sensors 

are very small; thus, wearing them during everyday working hours does not hinder participants. 

The algorithms integrated into the movisens Move sensors effectively address and resolve 

all previously identified issues related to energy expenditure (EE) estimation and activity 

recording in other devices. These improvements include features such as saving and displaying 

raw data in milligrams (mg) rather than Counts, utilizing an activity-based model instead of a 

linear regression model, and achieving more precise EE estimation through the incorporation 

of additional sensors like acceleration, barometric sensor, and skin temperature, as opposed to 

relying solely on one acceleration sensor. Thus, the movisens sensors are the most precise 

mobile sensors currently available on the market. Move 3 (Figure 2.8) is designed and 

optimized for research applications to record the occupant's physical activity and other 

secondary parameters. The main technical characteristics are specified in Table 2.7. A person's 
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physical activity is obtained by measuring a person's acceleration through three dimensions, as 

well as atmospheric air pressure and air temperature. The sensor can be configured via a 

computer using the DataAnalyzer software, which allows the calculation and analysis of the 

following parameters and the generation of desired reports: 

• Acceleration in three dimensions  

• Atmospheric pressure  

• Temperature  

• Acceleration of movement  

• Acceleration along the axis of the body  

• Axis body inclination  

• Number of steps  

• Activity classes  

• Body position  

• Height  

• Activity (Energy expenditure)  

• Total energy expenditure 

• Metabolic rate  

• Summary of energy expenditure 

• Physical activity report  

• Report on physical activity and energy expenditure 

 

 

Figure 2.8. Wearable sensory device Move3 
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Table 2.7. Technical specification of wearable sensory device 

Internal sensors 

3D acceleration sensor: 

Measurement range: +/-16 g 

Noise: 4 mg 

Output rate: 64 Hz 

Pressure sensor: 

Measurement range: 300 – 1000 hPa 

Noise: 0.03 hPa 

Output rate: 8 Hz 

Environmental conditions 

Temperature: -20 °C to 60 °C 

0 °C to 45 °C during charging 

Humidity: 0 to 75% RH  

Atmospheric pressure: 300 to1100 hPa absolute 

Number of cycles 300 with 1C/1C > 80% 

Maximum recording capacity ~ 2 months 

Charging battery run time (recording) ~ 9 day 

 

The calculation of energy expenditure and MET is done in two steps. In the first step, the 

activity class is estimated based on acceleration and barometric signals. The appropriate model 

for estimating energy expenditure is selected depending on the detected activity class. The 

model then takes the MovementAcceleration metric, elevation change extracted from 

barometric data, and personal parameters of age, gender, weight, and height to calculate energy 

expenditure. Energy expenditure values are internally calculated for 1 min intervals regardless 

of the configured output interval. The models were built by regression from a large database of 

indirect calorie measurements for each physical activity class and sensor location. The energy 

expenditure estimation quality depends on the sensor's location. The best results can be obtained 

for the hip and chest sensor positions. Therefore, occupants wore a Move 3 sensor [76] on their 

belts for 8 hours each day throughout the measurement period. 
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2.5. Statistical research 

Statistical research has been done in three phases:  

1) statistical observation, 

2) grouping (tabular and graphical presentation of statistical data), 

3) statistical analysis and interpretation of the results of the analysis. 

Subjective data were collected using a questionnaire developed according to ISO 

10551:2019 [77], with additional questions concerning participants' basic information. 

A survey questionnaire was employed to gather subjective responses from occupants three 

times a day (at 9:00, 12:00 and 15:00 hours) during the examination period. The initial series 

of questions pertained to personal information (including age, gender, height, weight, and 

educational level). The second set delved into the occupants' workload and productivity 

throughout the day. The third set assessed the occupants' attire, while the final set concentrated 

on the occupants' perception and contentment with room conditions concerning thermal comfort 

criteria in office settings. 

Considering the characteristics of the target population, and logistical considerations, the 

direct access method was used to deliver the survey questionnaire, i.e. questionnaires were 

delivered to the users personally in order to ensure the timelines of the given answers. This way 

of delivering the survey enabled more control over the data collection process and ensured 

questionnaires were distributed and appropriately completed, reducing the risk of incomplete 

or inaccurate responses. 

The survey was conducted anonymously so that the answers were honest and unimposed to 

get the most precise possible picture of the topic under consideration. 

According to Goldman [78] the minimum subject in thermal comfort studies is at least 6 

occupants. In this research, 8 occupants participated, four located in Building A and four in 

Building B. Two employees use the same office during working hours in both buildings.  

Table 2.8 displays fundamental occupant details. BMI was computed based on participants' 

provided data, derived from their body mass or weight (in kilograms) divided by the square of 

their body height (in meters). 
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Table 2.8. Test subjects with respect to their age and gender 

  Gender Age 

 Total Men Women 1. group  

35-44 

2. group 

45-54 

3. group 

55+ 

Building A 4 1 3 3 0 1 

Building B 4 2 2 2 2 0 

 

The tools that are used for data analysis are the IBM SPSS Statistics (Statistical Package for 

Social Sciences) software package and the Microsoft Excel programming language. In addition, 

MS Excel is used in all important phases of the statistical analysis process, from the formation 

of the database, sorting and grouping of data, graphical display of statistical series, calculation 

of basic statistical analyzes and procedures, as well as analysis of time series. MS Excel is 

compatible with SPSS, a software package used to investigate which measured indoor thermal 

parameters are statistically significant for further research. The results of all performed tests are 

considered statistically significant when the confidence (p) is p ≤ 0.05. The interpretation of the 

results is as follows: p ≤ 0.001 means highly significant, 0.001 < p ≤ 0.01 means significant, 

0.01 < p ≤ 0.05 means weakly significant, and p > 0.05 means that the impact is not significant 

[79]. 

 

2.6. Mathematical modeling 

Mathematical modeling was obtained in MATLAB R2018 program package. Artificial 

Neural Networks (ANNs) are employed to establish a connection between influential 

environmental parameters affecting thermal comfort and occupant metabolic rates. ANN 

comprises artificial neurons interconnected through weighted connections, drawing inspiration 

from biological neural systems. The learning process in neural networks mirrors that of 

biological systems, involving training with input and output datasets. During this process, 

connection weights are iteratively adjusted to effectively address specific problems. The widely 

utilized feedforward ANN for supervised regression and classification tasks is the multi-layer 

perceptron (MLP), as depicted in Figure 2.9 [80]. The MLP includes an input layer, an output 

layer, and one or more hidden layers, each equipped with a weight matrix, 𝑤, and a bias vector, 

𝑏.  
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Figure 2.9. Multi-layer perceptron with one hidden layer 

 

Every node in each layer of MLP, including the bias node, establishes a full connection with 

all nodes in the subsequent layer. The number of nodes in the input layer corresponds to the 

quantity of input parameters, while the output layer can accommodate more than one node, 

aligning with the number of predictions the network is tasked with generating. The 

hyperparameters, specifically the number of hidden layers and their nodes, are adjustable to 

ensure that the model meets the desired approximation and possesses suitable generalization 

capability. Hidden layers have the task of mapping complex relations between input factors and 

responses, i.e. between inputs and outputs of the ANN model. The number of hidden nodes 

impacts the network's capacity to learn and generalize from the training data. 

With two or three hidden nodes, the network can potentially capture more intricate 

relationships between the input features, making it more capable of fitting a wider range of data 

distributions. Having more than one hidden node provides more opportunities for different 

feature combinations, which can improve the network's ability to capture non-linear 

relationships in the data. If the data is highly complex, using just one hidden node might result 

in underfitting, where the model cannot capture the underlying patterns effectively. However, 

it's essential to strike a balance and not add too many hidden nodes, as this can lead to 

overfitting. Overfitting occurs when the model becomes too specialized in the training data and 

fails to generalize well to new, unseen data. Selecting the optimal number of hidden nodes is 

often done through a process called hyperparameter tuning or cross-validation. This involves 

trying different configurations of the network, including various numbers of hidden nodes, and 
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selecting the one that performs best on a validation dataset. Ultimately, the choice of the number 

of hidden nodes depends on the complexity of the problem, the amount of available data, and 

the network architecture as a whole. There is no one-size-fits-all answer, and it's essential to 

experiment with different configurations to find the best trade-off between model complexity 

and generalization performance. 

MLPs are relatively easy to adjust. The primary reason is the availability of the 

backpropagation algorithm. Backpropagation is an efficient method to compute the gradients 

of the model's parameters (weights and biases) with respect to the loss function. This gradient 

information allows the model to update its parameters in the opposite direction of the gradient, 

effectively minimizing the loss function during training. This process is essential for adjusting 

the model to fit the data. 

This method is selected because artificial neural networks seek correlations among non-

linear data, amalgamating them into a unified and intricate input dataset. The statistical analysis 

results in this study show which of the measured indoor parameters are significant, so they can 

be taken as input parameters to develop a MET prediction model.  

The artificial intelligence models employed in previous studies have demonstrated 

successful predictions of occupants' thermal comfort [49] [81]. The model's accuracy would be 

increased by applying similar strategies to the MET prediction. 
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3. RESULTS AND DISCUSSION 

3.1. Preliminary study: Statistically significant parameters of thermal comfort 

in office buildings 

In Building A, a preliminary study was conducted using surveys to determine the parameters 

that notably influence the thermal comfort of occupants in the office building. In definition, a 

preliminary study is a research activity carried out before a more extensive study to collect 

initial information about what occupants perceive as comfort parameters and information about 

the importance of specific comfort parameters. Another reason the preliminary study was used 

was to develop more focused and relevant research questions for the survey questionnaire that 

would be included in further investigation and to have a better understanding of the potential 

challenges involved in carrying out the research. 

Furthermore, surveys are important tools in preliminary studies for gathering data, 

measuring attitudes and sensations, identifying needs and preferences, comparing groups, and 

providing evidence for decision-making. By using surveys to collect information in a structured 

and systematic way, valuable insights were gained that helped create a more precise survey 

question that would be used in later research and identify exact parameters that should be 

measured. The statistical sample providing insights about occupant's thermal comfort 

preferences in office building consisted of 35 randomly selected building users of different age, 

gender and years of working experience. Therefore, the overall quantity of completed 

questionnaires amounted to 35, with two not being filled entirely.  

Overall, the preliminary study played a vital role in the research process by providing initial 

information and insights that informed the development of more focused and relevant research 

questions, refined the study design, and ensured the feasibility of the proposed comfort research. 

The concluded analysis showed that among all the parameters taken into consideration to 

have an impact on occupant indoor sensation, indoor air temperature and air quality proved to 

be statistically significant.  

Table 3.1 outlines the parameters identified as influential factors impacting occupants' 

thermal comfort within their work environment. Specifically, it details the linear relationships 

among numerical variables like window view, air temperature, and air quality. 
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Table 3.1. Linear correlation of parameters affecting the occupant satisfaction with the 

environment  

*Correlation is significant at the 0.01 level (2-tailed). 

 

The linear correlation test utilizes the Pearson coefficient (r) [10]. Based on the magnitude 

of this coefficient, one can infer the direction and strength of the linear correlation between the 

observed variables. With r being 0.65 which represents the mean strong correlation, it can be 

concluded that occupant satisfaction with the room conditions i.e. environment is influenced by 

the indoor air temperature. Furthermore, with r being 0.639, representing the mean strong 

correlation, it can be concluded that occupant satisfaction is also influenced by air quality. In 

essence, the perception of thermal comfort tends to improve as the values of the discussed 

variables increase. Since the empirical significance of the coefficient of correlation () is 

approximately 0, the correlation coefficient between satisfaction and the mentioned variable in 

the observed building is statistically significant with a test significance of 95%.  

Figure 3.1 and Figure 3.2 are denoting that an increase in occupants' satisfaction regarding 

indoor air temperature and air quality leads to an increase in the overall occupants' comfort 

sensation. These parameters are statistically significant, with a confidentiality interval of 99%.  

Furthermore, the identical conclusion regarding the significance of the coefficient may also 

arise with a test significance level of 99%. In addition, test results showed that occupant 

satisfaction with the environment does not depend on window view. 

Correlation Window view Indoor air 
temperature 

Indoor air 
quality 

Occupant  
satisfaction 

Window view Pearson 
Correlation, r 
Sig. (2-tailed),  
N   

1 
 

35 

0.127 
0.467 

35 

0.331 
0.052 

35 

0.280 
0.104 

35 

Indoor air 
temperature 

Pearson 
Correlation, r 
Sig. (2-tailed),  
N   

0.127 
0.467 

35 

1 
 

35 

0.510* 
0.002 

35 

0.650* 
0.000 

35 

Indoor air quality Pearson 
Correlation, r 
Sig. (2-tailed),  
N   

0.331 
0.052 

35 

0.510* 
0.002 

35 

1 
 

35 

0.639* 
0.000 

35 

Occupant 
satisfaction 

Pearson 
Correlation, r 
Sig. (2-tailed),  
N   

0.280 
0.104 

35 

0.650* 
0.000 

35 

0.639* 
0.000 

35 

1 
 

35 
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Figure 3.1. Correlation between occupants’ perception of comfort satisfaction and occupants’ 

perception of indoor air temperature 

 

 

Figure 3.2. Correlation between occupants’ perception of comfort satisfaction and occupants’ 

perception of indoor air quality 
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Table 3.2 illustrates the correlation among numerical variables, including gender, smoking 

habits, age, duration of employment, office sharing, and occupant satisfaction. It displays the 

relationships among these occurrences with modalities linked to the ordinal scale. The rank 

correlation measurement test employes Spearman's rank correlation coefficient (rs) or 

Spearman's rho. The coefficient can assume values within the range of -1 to 1. A value closer 

to the extremes of this interval indicates a stronger correlation in the ranking of observed 

variables [10]. 

Table 3.2. Rank correlation of parameters to determine ones that affect the occupant 

satisfaction  

*Correlation is significant at the 0.05 level (2-tailed). 

 

In this scenario, with a test significance of 95%, the Spearman's rank correlation coefficient 

indicates a positive relationship between Occupant satisfaction and Gender, measuring at 

0.397. Given that the gender variable holds a value of 1 for men and 2 for women, the analysis 

results suggest that women tend to feel more comfortable in their office space compared to men. 

Additionally, the Spearman's rank correlation coefficient demonstrates a negative relationship 

between the variability in Occupant satisfaction and Office sharing. This implies that both male 

and female occupants express higher satisfaction when they do not share the office space with 

anyone else. On the other hand, a qualitative assessment of the occupant’s perception of the 

indoor environment showed no statistical difference in behavior between smokers and non-

Spearman’s rho Gender Smoker Age Years of 
employment 

Office 
sharing 

Occupant 
satisfaction 

Gender Correlation Coef., rs 
Sig. (2-tailed),  
N   

1.000 
 

35 

0.053 
0.761 

35 

-0.023 
0.895 

35 

0.067 
0.703 

35 

-0.293 
0.088 

35 

0.397 
0.018 

35 

Smoker Correlation Coef., rs 
Sig. (2-tailed),  
N   

0.053 
0.761 

35 

1.000 
 

35      

-0.156 
0.371 

35 

-0.107 
0.539 

35 

0.000 
1.000 

35 

-0.107 
0.541 

35 

Age Correlation Coef., rs 
Sig. (2-tailed),  
N   

-0.023 
0.895 

35 

-0.156 
0.371 

35 

1.000 
 

35 

0.919* 
0.000 

35 

-0.114 
0.516 

35 

-0.047 
0.788 

35 

Years of 
employment 

Correlation Coef., rs 
Sig. (2-tailed),  
N   

0.067 
0.703 

35 

-0.107 
0.539 

35 

0.919 
0.000 

35 

1.000 
 

35 

-0.243 
0.159 

35 

0.041 
0.814 

35 

Office 
sharing 

Correlation Coef., rs 
Sig. (2-tailed),  
N   

-0.293 
0.088 

35 

0.000 
1.000 

35 

-0.114 
0.516 

35 

-0.243 
0.159 

35 

1.000 
 

35    

-0.383 
0.023 

35 

Occupant 
satisfaction 

Correlation Coef., rs 
Sig. (2-tailed),  
N   

0.397 
0.018 

35 

-0.107 
0.541 

35 

-0.047 
0.788 

35 

0.041 
0.814 

35 

-0.383 
0.023 

35 

1.000 
 

35 
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smokers, and people of different age and years of employment in the office with a test 

significance of 95%.  

3.2. Analysis of data obtained by measuring equipment and occupants' 

sensation according to survey questionnaire results  

According to the methodology described in Chapter 02, an investigation was carried out in 

public office buildings in real working circumstances with devices for measuring the internal 

thermal conditions (motion level, air temperature in the office rooms, relative humidity, and 

level of CO2) and wearable sensory devices (metabolic rate). 

An internal sensor TROTEC BZ30 Data Logger was placed centrally at the desk level in the 

room. Once installed, sensors were fully automated and zero-maintenance, which allow 

reporting on air quality efficiently and effectively. 

The total number of collected data was 53,760 values for air temperature, relative humidity 

and CO2 singularly and 26,880 values for motion frequency. Data were retrieved each minute 

over a 7-day period and for the analysis were averaged per season. Two occupants were in the 

office at desks each working day between the hours of 8:00 and 16:00. The maximum 

occupancy was generally between 9:00 and 15:30. 

On the other hand, survey questionnaires were used for gathering information about 

occupants' sensation in a given moment. They provided a wealth of information that was 

analyzed to identify patterns, trends, and relationships between variables of measured data and 

occupants' sensation. By asking occupants to rate their agreement or disagreement with a 

specific statement or question about comfort in a given time, insights into the views, needs and 

preferences of a particular population are gained to make the analysis more comprehensive. 

A total of 670 questionnaires were completed for the study. Participant responses were 

averaged for each season, and the reported data were then compared with a set of measured 

data, leading to conclusions based on the analysis. 

3.2.1. Motion level 

For the conducted study, it was necessary to understand the movement of the occupants in 

a room to accurately determine how much time they spend in that space and what time is 

relevant for the measurements to take place. In Figure 3.3 the frequency of movement in the 

offices is shown. Straight lines represent periods of movement of any activities, and blank 
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spaces represent periods without movement. The latter means either there were no occupants in 

the office during the time of the measurement or the sensor captured no movements at that time. 

 

Figure 3.3. Frequency of movement in the offices 

 

According to the results, occupants spend their working hours in the offices, except for a 

half-hour break, most often between 10:30 and 11:00 in Building A and between 11:00 and 

11:30 in Building B.  

Although, occupants were mainly engaged in predominantly sedentary activities like 

writing, typing, calculating, etc., it is evident from Figure 3.3 that the occupants are in 

movement the entire time they spend in their workplace. 

The downside of this monitoring was that quiet activities could only be captured partially 

because of the office equipment like computer monitors, regardless of the sensor sensitivity. 

Furthermore, the sensor also captured the movement of curtains and plants. Thus, these results 

can only speak tentatively about the movements in the room and cannot be considered as 

general conclusions. However, the purpose of this investigation was to estimate how much time 

occupants spend in offices during their working hours. 

3.2.2. Air temperature 

Air temperature is the most known parameter affecting the thermal comfort sensation. 

Acceptable temperature for most types of work in office buildings are between 16 °C to 24 °C, 

with 20 °C optimal for an office [21]. 

The following tables (Table 3.3 to Table 3.6) show the temperature differences in the offices 

of Building A and Building B during different periods of the year, obtained by descriptive 
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analysis in the SPSS software package. The results showed minimum and maximum value of 

the air temperature, as well as mean and standard deviation value for every season.  

The mean value is a statistical measure that provides information about the central tendency 

of air temperature in the room during the periods of measurement. It represents an average air 

temperature value and is calculated by summing up all the temperature data points and dividing 

it by the number of days of measurement. It was used for comparing office temperature 

conditions between two buildings throughout the year. 

On the other hand, standard deviation is a statistical measure that provides information 

about the dispersion or variability of air temperature. It measures the spread of the air 

temperature around the mean value and is calculated by taking the square root of the variance. 

Table 3.3. Indoor air temperature in the spring season 

 

 

Descriptive Statistics 

Building A N Minimum Maximum Mean Std. Deviation 

Office 1 421 25.05 28.32 26.8547 0.85363 

Office 2 421 25.39 29.60 27.4911 1.09922 

Valid N (listwise) 421     

 

Building B N Minimum Maximum Mean Std. Deviation 

Office 1 406 25.48 27.32 26.6095 0.42432 

Office 2 421 25.52 26.52 26.0416 0.25344 

Valid N (listwise) 406     

 

In the spring season the mean value of air temperature in Building A was 26.9 °C and  

27.5 °C, while in Building B was 26.5 °C and 26 °C, which is considered rather high for office 

premises. A standard deviation of 0.85363 (in Building A) is generally considered low. This 

indicates that the temperatures in the data set are relatively close to the mean. In more technical 

terms, a standard deviation of 0.85363 means that, on average, each data value deviates from 

the mean by 0.85363 units. 

On the other hand, the standard deviation of 1.099 could be classified as moderate. This 

indicates that the temperature in the data set is somewhat spread out around the mean with some 

variation between individual temperature measurements. It suggests that the temperature in this 
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data set is fairly typical for a particular location or time period. However, there may be some 

variability due to external factors such as weather or changes in the environment. 

A standard deviation of Building B indicates that the data values are clustered relatively 

close to the mean and have similar central temperature tendencies of offices in between. 

Table 3.4. Indoor air temperature in the summer season 
 

 

Descriptive Statistics 

 

Building A N Minimum Maximum Mean Std. Deviation 

Office 1 421 29.19 30.66 29.6714 0.32676 

Office 2 421 26.99 29.07 27.9496 0.79202 

Valid N (listwise) 421     

 

Building B N Minimum Maximum Mean Std. Deviation 

Office 1 421 26.03 29.10 26.7810 0.36981 

Office 2 420 25.16 27.05 26.1015 0.42173 

Valid N (listwise) 420     

 

Mean temperature in the summer period were higher in Building A (~28 °C to 30 °C) than 

in Building B (~26 °C to 27 °C). The standard deviation in the summer period is generally low 

for both buildings, meaning there was no significant variation or dispersion of the air 

temperature values from their mean. 

Table 3.5. Indoor air temperature in the autumn season 
 

 

Descriptive Statistics 

 

Building A N Minimum Maximum Mean Std. Deviation 

Office 1 421 21.70 26.00 24.6409 1.32352 

Office 2 421 21.78 27.63 24.2866 1.48278 

Valid N (listwise) 421     

 

Building B N Minimum Maximum Mean Std. Deviation 

Office 1 421 23.51 24.59 24.0420 0.21924 

Office 2 421 22.68 24.83 24.0900 0.44067 

Valid N (listwise) 421     
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In the autumn period, it was noted that Building A has a higher standard deviation of air 

temperature values than Building B. It indicates that the temperature in the Building A data set 

is somewhat spread out around the mean temperature of 24 °C, with a noticeable degree of 

variation between individual temperature measurements. On the other hand, the standard 

deviation of temperature values in Building B was low to very low.  

The mean temperature value for the autumn period is around 24 °C for both buildings, with 

a higher maximum temperature in Building A. 

Table 3.6. Indoor air temperature in the winter season 
 

 

Descriptive Statistics 

 

Building A N Minimum Maximum Mean Std. Deviation 

Office 1 421 22.03 27.58 25.8726 1.19860 

Office 2 421 28.17 32.57 31.2328 1.08048 

Valid N (listwise) 421     

 

Building B N Minimum Maximum Mean Std. Deviation 

Office 1 421 23.00 24.62 23.9584 0.45294 

Office 2 421 22.79 24.90 24.0229 0.58704 

Valid N (listwise) 421     

 

In the winter period, mean temperatures are considerably higher in Building A with 

moderate standard deviation for both offices. On the contrary, Building B has a low standard 

deviation as the mean temperature values are not so divergent from one office to another. 

The previous tables show that the average temperature in the room varies significantly 

between Building A and Building B. While the offices in Building B are within the limits 

recommended by the ASHRAE manual [7], two extremes were recorded in Building A. The 

first one in the summer, due to extremely high outside temperatures and inability of the HVAC 

system to reach lower temperatures, and the second one in the winter, due to the use of 

additional heaters to heat the premises to higher temperatures than the one conditioned by the 

HVAC system. While the temperature during working hours inside Building B varied from  

1 C to 2 C, in Building A the temperature varied much more. The most considerable variation 

in temperature during working hours can be seen in the autumn measurement period. The 

temperature ranges from 21.8 C to 27.6 C. In the summer period there were the least 
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deviations in air temperature during the measurement period. In general, higher temperatures 

(both indoor and outdoor) prevail in Building A with a higher standard deviation of temperature.  

During the cooling period (spring/summer), lower temperatures were recorded in the offices 

where occupants of the second age group (according to Table 2.8) maintained the temperature 

at approximately 26 °C. Building occupants of different age groups that share an office kept 

their office temperatures slightly higher, namely 26.6 °C in Building B and 27.5 °C to 27.9 °C 

in Building A. The measurement results also showed that the third age group (according to 

Table 2.8) prefers lower temperatures in the warmer period of the year.  

During the heating period (autumn/winter), higher temperatures were recorded in the offices 

where occupants of the second age group (according to Table 2.8) maintained the temperature 

at approximately 24 °C during the entire period. Building occupants of different age groups that 

share an office kept their office temperatures slightly lower, namely 24 °C in Building B and 

24.6 °C to 25.8 °C in Building A. Hence, occupants of age 55+ prefer higher temperatures in 

the winter compared to those aged 35 to 44.  

According to the [82], the difference between the outside and inside temperature must not 

exceed 7 C during the cooling period, which was the case for the both examined buildings. 

Figure 3.4 represents the average temperature sensation of all occupants during the year. 

The neutral temperature, which on the Likert scale in the range from 1 to 5 indicates the value 

3, represents the state of comfort. Lower values represent warm to hot sensation, while higher 

temperatures represent cool to cold sensation. 

 

Figure 3.4. Occupants’ temperature sensation during the year 
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It can be seen that occupants generally feel warm in their offices throughout all of the 

seasons. Moreover, the research results showed that women are more sensitive to temperature 

variations than men and are less satisfied with exposure to colder temperatures. In addition, by 

comparing temperature sensation with actual temperature values, it can be concluded that the 

neutral temperature for the occupants of Building B is 2 C lower than for the occupants of 

Building A. Furthermore, occupants have adapted to the geographical location where they live 

and work. Hence, occupants of Building A are more satisfied with higher air temperatures than 

occupants of Building B. It can be concluded that one of the influences on satisfaction is an 

adaptation to the geographical location, i.e. general impact of specific geographical location.  

The Friedman test in SPSS (Table 3.7) shows that occupants' satisfaction with room 

temperature depends on the season. A chi-square value of 9 with an asymptotic significance 

level of 0.029 suggests that there is a significant difference between the season’s temperature 

satisfaction being compared. This means that the null hypothesis, which states that there is no 

significant difference between the satisfactions, can be rejected at the chosen significance level 

of 95%. Based on the data, the air temperature in the offices in spring has the lowest average 

rank of satisfaction, which is 1.50. This result indicates that occupants are most dissatisfied 

with the office temperature in the spring season. Similar indicators are also valid for summer. 

Therefore, the office temperatures in the cooling season should be lower ones. On the other 

hand, in the heating season the office air temperature is mostly suitable for the building 

occupants. 

Table 3.7. Friedman's test of occupants' satisfaction with the air temperature in the office 
 

Ranks 

 Mean Rank 

temp_spring 1.50 

temp_summer 2.25 

temp_autumn 3.00 

temp_winter 3.25 

 

Test Statisticsa 

N 8 

Chi-Square 9.000 

Df 3 

Asymp. Sig. 0.029 

a. Friedman test 
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3.2.3. Air relative humidity 

Monitoring humidity level was done for the purpose of investigation as a part of air quality, 

together with CO2 level, as a parameter that is statistically significant for the occupants' comfort 

sensation. Besides comfort, maintaining an appropriate level of relative humidity in office 

buildings is important for the well-being and productivity of the occupants, as well as the 

maintenance of the building and its equipment. Generally, the recommended range of relative 

humidity in office buildings is between 30% and 60% [7]. 

High relative humidity can cause discomfort for building occupants by making the air feel 

sticky and oppressive, which can affect concentration. Additionally, elevated humidity can 

promote the growth of mold, mildew and other microorganisms, which can trigger allergies, 

asthma and other respiratory problems. Also, high humidity can make it more difficult for air 

conditioning systems to regulate the temperature, leading to higher energy bills. 

On the other hand, the air is perceived as dry when the relative humidity is low which can 

cause dry skin, lips, and eyes, leading to discomfort and irritation. It can also exacerbate 

respiratory problems and increase the risk of catching colds and other illnesses which are often 

an indicator of the sick building [83]. Also, dry air can cause static electricity buildup, damaging 

sensitive electronic equipment. In addition to physical symptoms, some environmental cues can 

indicate low relative humidity. For example, static electricity buildup can indicate that the air 

is dry. This can cause clothes to cling to the body or produce sparks when touching metal 

objects. Another sign of low humidity is the cracking or shrinking of wooden objects or 

furniture, as the wood loses moisture and contracts in dry conditions. Paper can become brittle 

and static-sensitive electronic components can be damaged due to the lack of moisture in the 

air.  

The relative humidity level inside a building is influenced by the temperature and humidity 

levels outside.  

The following figures (Figure 3.5 to Figure 3.8) represent line graphs showing hourly 

averaged relative humidity level (%) for the offices of Building A and Building B during all 

four measurement periods. 
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Figure 3.5. Variation of relative humidity in offices during the spring period 

 

 

 

 

Figure 3.6. Variation of relative humidity in offices during the summer period 
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Figure 3.7. Variation of relative humidity in offices during the autumn period 

 

 

 

 

Figure 3.8. Variation of relative humidity in offices during the winter period 

 



 

 

 

Nikolina Pivac – Doctoral Thesis  50 

 

Throughout the study period, there was typically an anticipated inverse correlation between 

relative humidity and temperature, meaning that lower temperatures were frequently linked 

with higher humidity levels.  

During the cooling period, the relative humidity in the premises of Building A and Building 

B is between 35% and 55%. During working hours in the offices of Building B, there are more 

frequent changes in humidity of the air. Also, the relative humidity in Building B is higher than 

in Building A.  

During the heating season in both buildings, an issue with dry air was observed, attributed 

to indoor temperatures in winter that exceeded the recommended range specified by standards. 

During the heating period, extremely low relative humidity levels were recorded in the offices, 

partially conditioned by heating the air to higher temperatures, whereby it dries out. 

Occupants identified a relative air humidity level of 50% as where they perceived the air as 

humid. Conversely, an air humidity level of approximately 40% was perceived by occupants as 

dry to satisfactory. Thus, results of occupants’ range of relative humidity percievation are 

within the standard recommendation. Furthermore, occupants are generally satisfied with the 

humidity in the air. 

3.2.4. Level of carbon dioxide  

Carbon dioxide is a natural component of air. The amount of CO2 in a given air sample is 

commonly expressed as parts per million (ppm). Normal outdoor CO2 levels range between 

350-450 ppm (parts per million) [84].  

Since carbon dioxide is a natural product of human respiration, indoor occupants are its 

main contributors [34]. Meaning, where indoor concentrations are elevated (compared to the 

outside air), the source is usually due to the building’s occupants. The exhaled breath of the 

average adult typically contains approximately 35,000 to 50,000 parts per million (ppm) of 

CO2, which is about 100 times higher than outdoor air levels. Without proper ventilation to 

disperse and eliminate the continuously generated CO2 by occupants, there is a risk of CO2 

accumulation. Chronic exposure to high levels of CO2 can have a wide range of health effects 

such as inflammation, bones and kidney composition changes, respiratory acidosis as well as 

behavioral and physiological changes [85].  

Indoor occupants may express discomfort with stuffiness and experience less comfortable 

breathing when indoor CO2 levels range between 600-1,000 parts per million (ppm). General 
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drowsiness can manifest when concentrations reach 1,000-2,500 ppm, and adverse health 

effects are more likely to occur when CO2 concentrations surpass 2,500 ppm [86]. 

In a building with minimal ventilation, the CO2 levels are prone to steadily rise during the 

day without reaching a stable concentration. Conversely, buildings equipped with robust 

ventilation and effective blending of outdoor air can hinder CO2 buildup beyond outdoor levels, 

ensuring consistently low CO2 concentrations throughout the day. 

According to ASHRAE Standard 62.1 [87], offices should be provided with 20 ppm outside 

air per person. Using CO2 as an indicator of ventilation, ASHRAE has recommended indoor 

CO2 concentrations be maintained at/below 800 ppm in offices. Because indoor CO2 levels are 

directly influenced by outdoor concentrations, it's crucial to evaluate outdoor CO2 levels when 

assessing indoor air quality. ASHRAE suggests that indoor CO2 concentrations ideally 

shouldn't surpass the outdoor levels by approximately 600 parts per million (ppm). 

The following figures (Figure 3.9 to Figure 3.12) represent line graphs showing hourly 

averaged CO2 concentration (ppm) data for the offices of Building A and B during all four 

measurement periods. 

 

Figure 3.9. Level of CO2 concentration during spring measurement period 
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Figure 3.10. Level of CO2 concentration during summer measurement period 

 

 

 

Figure 3.11. Level of CO2 concentration during autumn measurement period 
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Figure 3.12. Level of CO2 concentration during winter measurement period 

 

Hourly averaged CO2 data was analyzed. Generally, CO2 levels peaked at around the end of 

a working day as the office was in full occupancy. Nevertheless, occupancy fluctuated in the 

afternoons due to work patterns, leading to a gradual decrease in CO2 levels to a median value 

of 550 ppm during a daily break. Peaks exceeding 1,000 ppm occurred in the mornings when 

occupants did not start a day with a window opening.  

During the cooling period, carbon dioxide levels in the premises of Buildings A and B 

ranged in average values between 500 ppm and 700 ppm. At the end of working hours, an 

increase in values is visible, which indicates a lack of adequate fresh air in the afternoon. 

During the heating period, the carbon dioxide levels in the premises of Building A ranged 

in average values between 560 ppm and 650 ppm, while those values in Building B were 100 

ppm higher. Hence, a decrease in the ventilation rate in Building B in the winter period 

compared to the summer period was observed. Therefore, increased frequency of air exchanges 

in space are required during the winter period. This can be attributed to the tendency of office 

windows to be open more frequently than they are closed. 

This research reveals how temporal patterns of CO2 change throughout the day in a small, 

two-person office environment. The data shows that, despite only having a few occupants in 
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the office, CO2 levels can rapidly rise during the initial hours of occupancy, surpassing the 

recommended comfortable threshold. 

Clearly, occupants were aware of the reduced air quality, complaining of ‘stuffiness’ and 

the need to open a window. Occupants also felt that the ‘uncomfortable’ air impacted their 

concentration. The CO2 level was observed to be significant for occupants, prompting them to 

routinely manage openings for intermittent natural ventilation within the room. 

In general, occupants were satisfied with ventilation in the buildings. Dissatisfaction arises 

solely when the CO2 concentration in the air nears the threshold of 700 ppm.  

3.2.5. Metabolic rate  

Sensors in this research were used to measure the occupant's MET as an interaction between 

a person's internal and external environment that considers individual differences and metabolic 

changes of the occupant in their daily activities.  

According to Yang et al. [88] the critical temperature influencing MET changes is 24 °C. 

Below this threshold, ranging from 18-24 °C, the MET fluctuation is relatively gradual. 

However, beyond 24-33 °C, the rate of MET changes becomes significant, underscoring the 

importance of this research. 

Activity is a complex feature that is closely intertwined with bodily movements, gestures, 

and the surrounding environment in which it occurs. Occupants' engagements can be classified 

into various dimensions, including movement, time, and location. Examples of typical activities 

include working in a designated workspace, walking to attend a meeting, and ascending stairs. 

Additionally, activities can be distinguished by whether they involve remaining stationary or 

involve movement within a building. 

The eight occupants wore sensors for activity capturing and MET calculating as described 

in Chapter 02. The analysis of wearable sensor data involved several steps, including data 

sampling, filtering, segmentation, feature extraction, and ultimately classification and 

interpretation. The total number of collected data was 107,520 which was averaged to 419 

seasonally for further calculation and analysis. 

The following figures (Figure 3.13 to Figure 3.20) show the parameters measured by 

sensors, specifically the MET and energy expenditure measured in watts. Energy expenditure 

refers to the total amount of energy that an individual expends to sustain their body’s functions 
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and physical activities. Total energy expenditure was obtained by summing the basic energy 

expenditure of metabolism and the energy expenditure of the sampled activity. Activity-related 

expenditure was calculated for each activity class separately, taking altitude into account. The 

value of MET was obtained by a regression model and is equal to the quotient of total energy 

expenditure and energy expenditure at rest. 

 

Figure 3.13. Energy expenditure and metabolic rate of Occupant 1 
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Figure 3.14. Energy expenditure and metabolic rate of Occupant 2 
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Figure 3.15. Energy expenditure and metabolic rate of Occupant 3 
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Figure 3.16. Energy expenditure and metabolic rate of Occupant 4 
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Figure 3.17. Energy expenditure and metabolic rate of Occupant 5 
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Figure 3.18. Energy expenditure and metabolic rate of Occupant 6 
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Figure 3.19. Energy expenditure and metabolic rate of Occupant 7 
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Figure 3.20. Energy expenditure and metabolic rate of Occupant 8 

 

As it can be seen from the results presented in Figures 3.13 – 3.20, EE and MET are closely 

related as MET is a significant component of EE. MET refers to the rate at which the body 

consumes energy to maintain its essential functions and processes at rest. It includes energy 

required for breathing, circulating blood, maintaining body temperature and other vital 

functions. 
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The results obtained by sensors showed that Occupant 1 exhibits the highest average energy 

consumption between 10:00 and 10:30, with an energy expenditure ranging from 100 W to 200 

W throughout the working day. On the other hand, Occupant 2 consistently has a significantly 

higher energy expenditure during the working day, ranging from 100 W to 250 W. Occupant 3 

peaks in energy consumption between 10:30 and 11:30, with an average energy expenditure 

fluctuating between 150 W and 400 W. Finally, Occupant 4 consumes the most energy in the 

early part of the day, with an average energy expenditure ranging from 90 W to 210 W. 

Occupant 5 exhibits the highest energy consumption during midday hours, with an average 

energy usage between 120 W and 300 W. Occupant 6 similarly peaks in energy consumption 

around midday, averaging between 100 W and 200 W. On the other hand, Occupant 7 shows 

the highest energy usage during the winter, with an average energy expenditure ranging from 

100 W to 210 W. Occupant 8 consumes between 100 W and 350 W on average. All occupants 

use the most energy during breaks due to increased activity.  

Furthermore, the results showed that mental work, as well as simple standing and walking, 

increased the MET. Also, it has been proven that the value of the MET changes over time for 

the same occupant but also varies among people performing similar daily activities. In addition, 

it was observed that the MET is higher for men than women when performing the same type of 

work. 

As for MET difference age-related, according to Table 2.8, the third age group has a lower 

activity level and, therefore, a lower MET. Therefore, a higher air temperature is needed as 

opposed to the first age group. Therefore, the third age group is less sensitive to alterations in 

the thermal environment but more susceptible to extreme temperature conditions. Their 

acceptable range of comfortable temperatures is narrower compared to younger individuals, 

likely due to a decline in the capacity to regulate body temperature as one ages. 

Figure 3.21 shows imprecision of calculating MET by referencing tables of activities along 

with their corresponding MET values as outlined in guidebooks and standards. For clarity of 

comparison, only Building A’ occupants are put through the analysis. 
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Figure 3.21. MET values of the occupants in Building A 

 

Despite engaging in similar daily activities, there is a notable disparity in the MET among 

these occupants. Therefore, dynamic changes in MET gained by the sensor measurement 

suggest diary methods of MET assessment are inapplicable for accurate thermal comfort 

prediction. 

3.2.6. Clothing insulation and occupant's sensation vote 

For predicting and evaluating the thermal comfort in buildings, clothing insulation is also 

an important factor. There are cultural differences between men and women in choosing 

clothing for work. The standards recommend a clothing level in the cooling period of 0.5 clo, 

and in the heating period, a clothing level of 1 clo [7]. 

In addition to seasonal clothing insulation changes between the two buildings' occupants, 

differences were also observed during the same day. For the clothing insulation assessment, a 

survey questionnaire was used for occupants to mark the clothes they wear at different times 

during the day. The ASHRAE handbook [7] provides a compiled list of clothing insulation 

values for commonly worn individual garments.  

Generally, higher clothing insulation was observed in the morning hours than in the middle 

and end of the working day. This is the result of lower morning temperatures. Based on the 

results of the analysis, it was concluded that women are more inclined to change the level of 

clothing than men during their working hours. 
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Figures 3.22 and 3.23 show the frequency of worn garments in clo during the year for 

Building A and Building B. 

 

  

Figure 3.22. Clo frequency during the year in Building A 

 

 

 

Figure 3.23. Clo frequency during the year in Building B 
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In the cooling period, lower clothing insulation is observed in Building A. In the warmer 

period, the most frequently worn garments were of 0.5 (summer) and 0.6 clo (spring). As for 

the cooling period, there is a big difference between autumn and winter. In the winter period, 

an increased frequency of clothing insulation of 0.8 clo was observed. However, the frequency 

of insulation greater than 1 clo was also noted. In the autumn period, the results are more 

dispersed, from 0.6 to 1.1.  

In Building B, during the cooling period, there are frequent repetitions of clothing insulation 

between 0.7 clo, while in the summer occupants dress much lighter, so often their clothes have 

insulation of 0.3 clo. This is significantly lower than in Building A. In autumn, in Building A, 

there is the largest dispersion of results, which vary between 0.6 and 1 clo, while in winter the 

clothing insulation of the occupants was usually 0.7 clo. Therefore, in winter the occupants of 

Building B dress much lighter than the occupants of Building A. 

The correlation between occupant’s BMI and the average level of clothing is shown in Table 

3.8.  

Table 3.8. Correlation between the occupant’s BMI average clo level  

Building A 
Woman Woman Man Woman 

BMI=20.8 BMI=23.6 BMI=23.8 BMI=22.7 

Season clo clo clo clo 

Spring 0.56 0.55 0.62 0.63 

Summer 0.44 0.43 0.51 0.46 

Autumn 0.77 0.59 0.59 0.93 

Winter 1.04 0.80 0.93 0.92 

         

Building B 
Man Woman Woman Man 

BMI=29.5 BMI=23.9 BMI=32.8 BMI=27.5 

Season clo clo clo clo 

Spring 0.64 0.62 0.53 0.64 

Summer 0.49 0.41 0.33 0.53 

Autumn 0.68 0.93 0.65 0.74 

Winter 0.85 0.97 0.69 0.70 

 

It can be seen that women have a higher average clothing insulation than men during the 

same season. As per the BMI, occupants with a higher index have a lower clothing insulation. 
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People with higher BMI might feel more comfortable wearing lighter and loose-fitting 

clothing as it allows better airflow and reduces the feeling of tightness. In addition, occupants 

with higher BMI may naturally generate more body heat due to their higher MET, making them 

feel warmer. Thus, with lighter clothing it is possible to avoid overheating. 

3.2.7. Summary of analyzed results 

Table 3.9 presents the average values concerning thermal comfort criteria for all periods of 

the year in both buildings.  

In both buildings, occupants consider an average sensed air temperature of 26°C in offices 

as being on the higher side. The greatest dissatisfaction with air temperature is noted during the 

spring season. The transitions between seasons emerged as the most critical periods from the 

perspective of thermal comfort. 

Table 3.9. Average values related to comfort conditions for both examined buildings 

 Building A Building B 

 
Air temp. 

[°C] 

CO2 level 

[ppm] 

RH level 

[%] 

Air temp. 

[°C] 

CO2 level 

[ppm] 

RH level 

[%] 

Heating 

season 

value 

26.7 ± 1.2 624.8 ± 25.3 39.4 ± 1.2 24 ± 0.4 742.2 ± 46.9 27 ± 0.3 

Cooling 

season 

value 

28 ± 0.4 599.4 ± 39.2 40.7 ± 0.6 26.4 ± 0.3 659.3 ± 81.1 50.5 ± 1.8 

 

Satisfaction levels were assessed using the system of Likert scale [89], spanning from 1 to 

5. A value of 3 denoted a neutral state (a state of comfort). Lower values indicated discomfort, 

such as warm to hot thermal conditions, dry air, etc. Conversely, higher values also indicated 

discomfort, but due to different factors, such as cool to cold thermal conditions, air humidity, 

and stifling air. 

The survey showed that the occupants were most often dissatisfied with the thermal 

conditions of the office rooms. In the heating period (colder period of the year), Building B 

occupants were mostly cold, which means the space is not heated enough. On the other hand, 

Building A occupants generally feel too warm in winter.  
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However, during the cooling period (warmer months), Building B occupants were mostly 

satisfied. Nevertheless, this does not apply to Building A occupants, whose average TSV shows 

increased values. They feel warmer than what is considered a comfortable level of comfort. 

Figures 3.24 and 3.25 provide a concise summary of TSV central tendency and variability 

throughout the year. 

 

Figure 3.24. Building A occupants' TSV during the year 

 

 

Figure 3.25. Building B occupants' TSV during the year 

 

Overall thermal sensation that can be seen in Figures 3.24 and 3.25 denotes occupants from 

both buildings generally feel warmer than what is considered to be recommended thermal state 

during the year. 
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3.3. Predicting personal occupant's thermal comfort using PMV-PPD model 

In order to assess the occupant's comfort with a measurable value, the PMV-PPD thermal 

balance model was applied. Its applicability was tested on the herein examined buildings. Using 

the PMV and PPD index calculation tool [90], the values presented in Table 3.10 and Table 

3.11 were gained. The working temperature of the office room and MET were measured, while 

clothing insulation was obtained by daily observation of the occupants. Average values for each 

period were taken into consideration and an average of 0.1 m/s was taken for the speed of air 

flow. The PMV value was calculated in three parts of the working day for both buildings. 

Values that do not meet ASHRAE standard 55 are marked in red. 

Table 3.10. The PMV and PPD values calculated for Building A occupants 
 

1. measurement: Spring 

9 h PMV PPD 12 h PMV PPD 15 h PMV PPD 

Occupant 1 0.15 5 Occupant 1 0.49 10 Occupant 1 0.91 23 

Occupant 2 0.15 5 Occupant 2 0.41 2 Occupant 2 0.84 20 

Occupant 3 0.49 10 Occupant 3 0.55 11 Occupant 3 1.11 31 

Occupant 4 0.28 7 Occupant 4 0.62 13 Occupant 4 1.16 33 
 
2. measurement: Summer 

9 h PMV PPD 12 h PMV PPD 15 h PMV PPD 

Occupant 1 1.19 35 Occupant 1 1.13 32 Occupant 1 1.19 45 

Occupant 2 1.19 35 Occupant 2 1.13 32 Occupant 2 1.19 45 

Occupant 3 0.92 23 Occupant 3 0.71 15 Occupant 3 0.5 10 

Occupant 4 0.92 23 Occupant 4 0.63 13 Occupant 4 0.42 9 
 
3. measurement: Autumn 

9 h PMV PPD 12 h PMV PPD 15 h PMV PPD 

Occupant 1 -0.14 5 Occupant 1 0.47 10 Occupant 1 0.68 15 

Occupant 2 -0.73 16 Occupant 2 0.15 5 Occupant 2 0.47 10 

Occupant 3 -1.0 21.5 Occupant 3 -0.21 6 Occupant 3 0.84 20 

Occupant 4 -0.27 7 Occupant 4 0.34 7 Occupant 4 1.12 31 
 
4. measurement: Winter 

9 h PMV PPD 12 h PMV PPD 15 h PMV PPD 

Occupant 1 -0.01 5 Occupant 1 0.87 21 Occupant 1 0.91 22 

Occupant 2 -0.3 7 Occupant 2 0.55 11 Occupant 2 0.65 14 

Occupant 3 1.36 44 Occupant 3 2.05 79 Occupant 3 2.3 88 

Occupant 4 1.33 42 Occupant 4 2.03 78 Occupant 4 2.29 88 
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Table 3.11. The PMV and PPD values calculated for Building B occupants 
 

1. measurement: Spring 

9 h PMV PPD 12 h PMV PPD 15 h PMV PPD 

Occupant 5 0.27 6 Occupant 5 0.43 9 Occupant 5 0.75 17 

Occupant 6 0.35 8 Occupant 6 0.43 9 Occupant 6 0.75 17 

Occupant 7 0.08 5 Occupant 7 0.3 7 Occupant 7 0.22 6 

Occupant 8 0.27 6 Occupant 8 0.47 10 Occupant 8 0.39 8 
 
2. measurement: Summer 

9 h PMV PPD 12 h PMV PPD 15 h PMV PPD 

Occupant 5 0.24 6 Occupant 5 0.55 11 Occupant 5 0.52 11 

Occupant 6 -0.05 5 Occupant 6 0.19 6 Occupant 6 0.17 6 

Occupant 7 -0.47 10 Occupant 7 0.01 5 Occupant 7 -0.01 5 

Occupant 8 0.08 5 Occupant 8 0.48 10 Occupant 8 0.46 9 
 
3. measurement: Autumn 

9 h PMV PPD 12 h PMV PPD 15 h PMV PPD 

Occupant 5 -0.27 6 Occupant 5 -0.21 6 Occupant 5 -0.04 5 

Occupant 6 0.12 5 Occupant 6 0.17 6 Occupant 6 0.25 6 

Occupant 7 -0.5 10 Occupant 7 -0.23 6 Occupant 7 -0.09 5 

Occupant 8 -0.32 7 Occupant 8 -0.05 5 Occupant 8 0.07 5 
 
4. measurement: Winter 

9 h PMV PPD 12 h PMV PPD 15 h PMV PPD 

Occupant 5 -0.23 6 Occupant 5 0.04 5 Occupant 5 0.15 5 

Occupant 6 -0.04 5 Occupant 6 0.19 6 Occupant 6 0.31 7 

Occupant 7 -0.45 9 Occupant 7 -0.22 6 Occupant 7 0.02 5 

Occupant 8 -0.41 8 Occupant 8 -0.24 6 Occupant 8 -0.02 5 

 

Based on the calculations, it's evident that certain Predicted Mean Vote (PVM) values are 

notably high in this particular scenario, suggesting a need to address and improve the existing 

comfort conditions in the buildings. Furthermore, the computation of the Predicted Percentage 

Dissatisfied (PPD) indexes revealed that the proportion of dissatisfied occupants frequently 

exceeded 20% throughout the day, reaching up to 80% of the people in that environment would 

be predicted to feel dissatisfied with the thermal conditions, which indicates a significant level 

of discomfort. 

In winter, occupants tend to have negative PMV values because there is a higher likelihood 

of drafts and air leakage in buildings. These cold air infiltrations can create localized discomfort 

for occupants, leading to negative PMV values. Differences in temperature between different 
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body parts or between body and surrounding surfaces can influence the perception of thermal 

comfort. Cold surfaces or cold air in contact with the body can also cause discomfort and result 

in negative PMV values. In addition, inadequate heating systems or uneven heat distribution 

can result in temperature variations within a building. 

On the other hand, in the warm period (such as summer), occupants tend to have positive 

PMV values higher than recommended because of the high temperatures and insufficient 

cooling. Summer often brings higher humidity levels, which can contribute to discomfort. High 

humidity reduces the evaporation of sweat from the skin, making it harder for the body to cool 

down. This can result in a sensation of stickiness and increased thermal discomfort, leading to 

positive PMV values. 

The exceptions are summer mornings in Building B where the indoor environment is 

typically warmer than desired. Hence, air conditioning system might be set to temperatures 

lower than what is considered comfortable for some occupants, leading to a feeling of coldness, 

especially if they were sitting or standing in the airflow. Moreover, moving from hot outdoor 

environments to highly air-conditioned indoor spaces could cause discomfort leading to 

negative PMV values. 

Occupants in Building B exhibit higher satisfaction levels based on the computed PVM 

indexes. In general, there are significantly fewer deviations from comfort in Building B than in 

Building A. There can be several possible reasons. Building B might have a more advanced or 

better-maintained HVAC system compared to Building A. An efficient HVAC system can 

better regulate temperature, humidity, and air quality, leading to a more comfortable indoor 

environment with fewer deviations as well as regular maintenance of HVAC systems. The 

orientation and design of Building B could be more favorable for maintaining thermal comfort. 

Factors such as the placement of windows, shading devices, and natural ventilation options can 

significantly affect the indoor temperature and reduce discomfort. Moreover, occupant behavior 

can also play a role. If occupants in Building B are more conscious of their comfort needs and 

utilize available controls effectively (e.g., adjusting thermostats), they contribute to a more 

comfortable environment with fewer deviations. 

Figure 3.26 shows a visual representation of Table 3.10 in order to clearly present the 

deviation from what is considered a comfort level. The colored area between -0.5 and 0.5 

represents Neutral thermal sensation i.e. state of comfort. Different lines indicate different 

Building A occupants. 
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Figure 3.26. PMV values of the Building A occupants during the periods of measurement 

 

Figures 3.27 and 3.28 provide a concise summary of PMV central tendency, variability and 

outliners throughout the year for both buildings. 

 

Figure 3.27. PMV values of the Building A occupants throughout the year 
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Figure 3.28. PMV values of the Building B occupants throughout the year 

 

The minimum value is beyond the recommended for the Occupant 2 and the maximum is 

higher than recommended for all of the Building A occupants. Building B occupants’ perennial 

PMV is narrower and in acceptable range, suggesting a higher degree of consistency than in 

case of Building A occupants’ PMV. 

In addition, in order to confirm the accuracy of the sensor, a comparison of the PMV index 

for Occupant 4 calculated using static MET value, against the PMV index calculated taking into 

consideration the dynamic MET value assessed by Move 3 sensor was made. The sensor's 

accuracy was confirmed by Occupant 4 with the questionnaire answer. Other parameters of 

PMV are measured and computed in both scenarios, but they are presented specifically with 

regard to room air temperature. 

Figure 3.29 illustrates the differences between the PMV index derived from the static MET 

value and the PMV index obtained using the MET value measured with Move 3.  
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Figure 3.29. Comparison of PMV regarding standard and measured MET values 

 

As Figure 3.29 indicates, the PMV determined using static MET values (as per the standard) 

does not accurately represent the actual state of occupant thermal sensation. For instance, at 15 

hours, according to the acquired PMV indexes, the occupant should feel Neutral (N), indicating 

comfort. However, the measured value aligns with the response provided in the survey 

questionnaire (refer to Table 3.12), classifying the sensation as Slightly Warm (SW).  

Table 3.12. Reported sensation of Occupant 4 

 
9 h 12 h 15 h 

Static PMV SW SW N 

Dynamic PMV SW SW SW 

Questionnaire answer SW SW SW 
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3.4. Mathematical modeling of metabolic rate 

3.4.1. Significant parameters for model creation 

The tests are conducted in order to investigate how internal working conditions impact 

occupants’ metabolic rate and which of the occupants’ individual parameters are significantly 

affecting it.  

If a parameter has a proven relevance of 50%, it means that it has demonstrated a significant 

impact on the investigation or study at hand. While the relevance of 50% may not be considered 

very high, it still indicates a moderate level of importance. It allows for a comprehensive 

analysis of all potential factors that may contribute to developing a metabolic rate model for 

thermal comfort assessment. Even if this parameter alone has 50% relevance, it may have a 

more substantial influence when considered in conjunction with other relevant factors. 

Moreover, it reduces the risk of overlooking potentially significant aspects of the investigation. 

First it was important to see whether the data has a normal distribution to decide which test 

should be used for testing. For test of normality, Shapiro-Wilk and Kolmogorov-Smirnov test 

were used [79]. 

The Shapiro-Wilk test calculates a test statistic (W) based on the discrepancies between the 

observed data and the expected values under a normal distribution. The test statistic is then 

compared to critical values to determine whether the data significantly deviates from normality. 

The null hypothesis for the test posits that the data follows a normal distribution, while the 

alternative hypothesis suggests that the data deviates from a normal distribution.  

The Kolmogorov-Smirnov test is a statistical test applied to test whether the data follows a 

normal distribution. It compares the empirical distribution of the data to the cumulative 

distribution function of the normal distribution. 

Normality test results for office temperatures and MET values of occupants in both 

buildings during the year are given in Table 3.13 and Table 3.14, respectively. 
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Table 3.13. Normality tests for office temperatures in both buildings during the year 

Tests of Normality 

 

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Office1_spring 0.164 406 0.000 0.932 406 0.000 

Office2_spring 0.085 406 0.000 0.969 406 0.000 

Office3_spring 0.096 406 0.000 0.951 406 0.000 

Office4_spring 0.152 406 0.000 0.944 406 0.000 

Office1_summer 0.135 406 0.000 0.933 406 0.000 

Office2_summer 0.168 406 0.000 0.841 406 0.000 

Office3_summer 0.261 406 0.000 0.771 406 0.000 

Office4_summer 0.250 406 0.000 0.783 406 0.000 

Office1_autumn 0.258 406 0.000 0.832 406 0.000 

Office2_autumn 0.130 406 0.000 0.936 406 0.000 

Office3_autumn 0.075 406 0.000 0.976 406 0.000 

Office4_autumn 0.096 406 0.000 0.960 406 0.000 

Office1_winter 0.235 406 0.000 0.725 406 0.000 

Office2_winter 0.098 406 0.000 0.926 406 0.000 

Office3_winter 0.156 406 0.000 0.912 406 0.000 

Office4_winter 0.107 406 0.000 0.947 406 0.000 

a. Lilliefors Significance Correction 
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Table 3.14. Normality tests for MET values of occupants in both buildings during the year  

Tests of Normality 

 

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

MET1_spring 0.222 419 0.000 0.767 419 0.000 

MET2_spring 0.173 419 0.000 0.812 419 0.000 

MET3_spring 0.388 419 0.000 0.630 419 0.000 

MET4_spring 0.201 419 0.000 0.760 419 0.000 

MET5_spring 0.201 419 0.000 0.803 419 0.000 

MET6_spring 0.143 419 0.000 0.859 419 0.000 

MET7_spring 0.154 419 0.000 0.799 419 0.000 

MET8_spring 0.157 419 0.000 0.861 419 0.000 

MET1_summer 0.195 419 0.000 0.775 419 0.000 

MET2_summer 0.117 419 0.000 0.922 419 0.000 

MET3_summer 0.216 419 0.000 0.691 419 0.000 

MET4_summer 0.110 419 0.000 0.932 419 0.000 

MET5_summer 0.231 419 0.000 0.745 419 0.000 

MET6_summer 0.136 419 0.000 0.843 419 0.000 

MET7_summer 0.191 419 0.000 0.751 419 0.000 

MET8_summer 0.198 419 0.000 0.813 419 0.000 

MET1_autumn 0.219 419 0.000 0.782 419 0.000 

MET2_autumn 0.227 419 0.000 0.747 419 0.000 

MET3_autumn 0.251 419 0.000 0.642 419 0.000 

MET4_autumn 0.172 419 0.000 0.812 419 0.000 

MET5_autumn 0.215 419 0.000 0.774 419 0.000 

MET6_autumn 0.115 419 0.000 0.883 419 0.000 

MET7_autumn 0.134 419 0.000 0.843 419 0.000 

MET8_autumn 0.182 419 0.000 0.809 419 0.000 

MET1_winter 0.243 419 0.000 0.701 419 0.000 

MET2_winter 0.243 419 0.000 0.634 419 0.000 

MET3_winter 0.169 419 0.000 0.768 419 0.000 

MET4_winter 0.159 419 0.000 0.824 419 0.000 

MET5_winter 0.111 419 0.000 0.904 419 0.000 

MET6_winter 0.158 419 0.000 0.797 419 0.000 

MET7_winter 0.181 419 0.000 0.772 419 0.000 

MET8_winter 0.157 419 0.000 0.821 419 0.000 

a. Lilliefors Significance Correction 
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Considering that the level of significance (Sig. in Tables 3.13 and 3.14) is less than or equal 

to the chosen significance level for both tests, the null hypothesis should be rejected, indicating 

that the data significantly deviates from a normal distribution. Hence, non-parametric tests and 

correlations will be used in the next statistical investigation.  

Including an excessive amount of data can make the analysis unnecessarily complex. 

Processing and analyzing excessive data are time-consuming and may strain the capabilities of 

the analysis. Furthermore, redundant variables provide similar information and can lead to 

inflated relationships or erroneous conclusions. It is important to strike a balance between 

having enough data to draw meaningful insights and avoiding the inclusion of excessive data 

that may complicate the analysis and obscure the main findings. 

The following tables (Table 3.15 to Table 3.22) show whether occupants’ metabolic rate 

varies due to office temperature for all four offices and eight occupants under the investigation 

in the different seasons of the year. Data is presented for summer and winter season.  

Table 3.15. Correlation between office temperature and MET values of occupants 1 and 2 in 

the summer season 

Correlations 

 

Office1_ 

summer 

MET1_ 

summer 

MET2_ 

summer 

Spearman's rho Office1_summer Correlation Coefficient 1.000 -0.485** -0.232** 

Sig. (2-tailed) . 0.000 0.000 

N 421 419 419 

MET1_summer Correlation Coefficient -0.485** 1.000 0.204** 

Sig. (2-tailed) 0.000 . 0.000 

N 419 419 419 

MET2_summer Correlation Coefficient -0.232** 0.204** 1.000 

Sig. (2-tailed) 0.000 0.000 . 

N 419 419 419 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table 3.16. Correlation between office temperature and MET values of occupants 3 and 4 in 

the summer season 

Correlations 

 

Office2_ 

summer 

MET3_ 

summer 

MET4_ 

summer 

Spearman's rho Office2_summer Correlation Coefficient 1.000 0.413** 0.400** 

Sig. (2-tailed) . 0.000 0.000 

N 421 419 419 

MET3_summer Correlation Coefficient 0.413** 1.000 0.094 

Sig. (2-tailed) 0.000 . 0.055 

N 419 419 419 

MET4_summer Correlation Coefficient 0.400** 0.094 1.000 

Sig. (2-tailed) 0.000 0.055 . 

N 419 419 419 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

 

Table 3.17. Correlation between office temperature and MET values of occupants 5 and 6 in 

the summer season 

Correlations 

 

Office1_ 

summer 

MET5_ 

summer 

MET6_ 

summer 

Spearman's rho Office2_summer Correlation Coefficient 1.000 0.216** 0.135** 

Sig. (2-tailed) . 0.000 0.006 

N 421 419 419 

MET5_summer Correlation Coefficient 0.216** 1.000 0.002 

Sig. (2-tailed) 0.000 . 0.963 

N 419 419 419 

MET6_summer Correlation Coefficient 0.135** 0.002 1.000 

Sig. (2-tailed) 0.006 0.963 . 

N 419 419 419 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table 3.18. Correlation between office temperature and MET values of occupants 7 and 8 in 

the summer season 

Correlations 

 

Office4_ 

summer 

MET7_ 

summer 

MET8_ 

summer 

Spearman's rho Office4_summer Correlation Coefficient 1.000 -0.133** 0.043 

Sig. (2-tailed) . 0.006 0.383 

N 420 419 419 

MET7_summer Correlation Coefficient -0.133** 1.000 0.091 

Sig. (2-tailed) 0.006 . 0.064 

N 419 419 419 

MET8_summer Correlation Coefficient 0.043 0.091 1.000 

Sig. (2-tailed) 0.383 0.064 . 

N 419 419 419 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

 

Table 3.19. Correlation between office temperature and MET values of occupants 1 and 2 in 

the winter season 

Correlations 

 

Office1_ 

winter 

MET1_ 

winter 

MET2_ 

winter 

Spearman's rho Office1_winter Correlation Coefficient 1.000 -0.136** -0.086 

Sig. (2-tailed) . 0.005 0.078 

N 421 419 419 

MET1_winter Correlation Coefficient -0.136** 1.000 0.203** 

Sig. (2-tailed) 0.005 . 0.000 

N 419 419 419 

MET2_winter Correlation Coefficient -0.086 0.203** 1.000 

Sig. (2-tailed) 0.078 0.000 . 

N 419 419 419 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table 3.20. Correlation between office temperature and MET values of occupants 3 and 4 in 

the winter season 

Correlations 

 

Office_ 

winter 

MET3_ 

winter 

MET4_ 

winter 

Spearman's rho Office2_winter Correlation Coefficient 1.000 0.024 -0.407** 

Sig. (2-tailed) . 0.629 0.000 

N 421 419 419 

MET3_winter Correlation Coefficient 0.024 1.000 0.343** 

Sig. (2-tailed) 0.629 . 0.000 

N 419 419 419 

MET4_winter Correlation Coefficient -0.407** 0.343** 1.000 

Sig. (2-tailed) 0.000 0.000 . 

N 419 419 419 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

 

Table 3.21. Correlation between office temperature and MET values of occupants 5 and 6 in 

the winter season 

Correlations 

 

Office3_ 

winter 

MET5_ 

winter 

MET6_ 

winter 

Spearman's rho Office3_winter Correlation Coefficient 1.000 0.207** -0.036 

Sig. (2-tailed) . 0.000 0.464 

N 421 419 419 

MET5_winter Correlation Coefficient 0.207** 1.000 0.075 

Sig. (2-tailed) 0.000 . 0.124 

N 419 419 419 

MET6_winter Correlation Coefficient -0.036 0.075 1.000 

Sig. (2-tailed) 0.464 0.124 . 

N 419 419 419 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table 3.22. Correlation between office temperature and MET values of occupants 7 and 8 in 

the winter season 

Correlations 

 

Office4_ 

winter 

MET7_ 

winter 

MET8_ 

winter 

Spearman's rho Office_winter Correlation Coefficient 1.000 -0.052 -0.173** 

Sig. (2-tailed) . 0.290 0.000 

N 421 419 419 

MET7_winter Correlation Coefficient -0.052 1.000 0.076 

Sig. (2-tailed) 0.290 . 0.121 

N 419 419 419 

MET8_winter Correlation Coefficient -0.173** 0.076 1.000 

Sig. (2-tailed) 0.000 0.121 . 

N 419 419 419 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

According to the correlation, there is a statistically significant relationship between 

occupant’s MET value and temperature in the summer with a test significance of 99%. As for 

the winter temperatures in the office, there is a 50% proven relationship between parameters. 

Hence, the overall relationship between MET and office temperature has been taken as 

significant. 

Furthermore, relative humidity and variation of CO2 level in the room proved to be in 

correlation with MET. The following tables (Table 3.23 to Table 3.30) show correlation 

between CO2 level and MET values, and between RH and MET values (Table 3.31 to Table 

3.38), which are given for all four offices and eight occupants under the investigation in the 

different seasons of the year (data is again presented for summer and winter season). 
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Table 3.23. Correlation between CO2 level and MET values of occupants 1 and 2 in the 

summer season 

Correlations 

 

CO2_B11_ 

summer 

MET1_ 

summer 

MET2_ 

summer 

Spearman's rho CO2_B11_summer Correlation Coefficient 1.000 -0.063 -0.054 

Sig. (2-tailed) . 0.197 0.272 

N 421 419 419 

MET1_summer Correlation Coefficient -0.063 1.000 0.204 

Sig. (2-tailed) 0.197 . 0.000 

N 419 419 419 

MET2_summer Correlation Coefficient -0.054 0.204 1.000 

Sig. (2-tailed) 0.272 0.000 . 

N 419 419 419 

 

 

 

Table 3.24. Correlation between CO2 level and MET values of occupants 3 and 4 in the 

summer season 

Correlations 

 

CO2_B12_ 

summer 

MET3_ 

summer 

MET4_ 

summer 

Spearman's rho CO2_B12_summer Correlation Coefficient 1.000 -0.329** -0.335** 

Sig. (2-tailed) . 0.000 0.000 

N 421 419 419 

MET3_summer Correlation Coefficient -0.329** 1.000 0.094 

Sig. (2-tailed) 0.000 . 0.055 

N 419 419 419 

MET4_summer Correlation Coefficient -0.335** 0.094 1.000 

Sig. (2-tailed) 0.000 0.055 . 

N 419 419 419 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table 3.25. Correlation between CO2 level and MET values of occupants 5 and 6 in the 

summer season 

Correlations 

 

CO2_B21_ 

summer 

MET5_ 

summer 

MET6_ 

summer 

Spearman's rho CO2_B21_summer Correlation Coefficient 1.000 0.038 -0.101* 

Sig. (2-tailed) . 0.447 0.043 

N 406 406 406 

MET5_summer Correlation Coefficient 0.038 1.000 0.002 

Sig. (2-tailed) 0.447 . 0.963 

N 406 419 419 

MET6_summer Correlation Coefficient -0.101* 0.002 1.000 

Sig. (2-tailed) 0.043 0.963 . 

N 406 419 419 

*. Correlation is significant at the 0.05 level (2-tailed). 

 

 

Table 3.26. Correlation between CO2 level and MET values of occupants 7 and 8 in the 

summer season 

Correlations 

 

CO2_B22_ 

summer 

MET7_ 

summer 

MET8_ 

summer 

Spearman's rho CO2_B22_summer Correlation Coefficient 1.000 -0.208** -0.020 

Sig. (2-tailed) . 0.000 0.686 

N 406 406 406 

MET7_summer Correlation Coefficient -0.208** 1.000 0.091 

Sig. (2-tailed) 0.000 . 0.064 

N 406 419 419 

MET8_summer Correlation Coefficient -0.020 0.091 1.000 

Sig. (2-tailed) 0.686 0.064 . 

N 406 419 419 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table 3.27. Correlation between CO2 level and MET values of occupants 1 and 2 in the 

winter season 

Correlations 

 

CO2_B11_ 

winter 

MET1_ 

winter 

MET2_ 

winter 

Spearman's rho CO2_B11_winter Correlation Coefficient 1.000 0.128** -0.057 

Sig. (2-tailed) . 0.009 0.244 

N 421 419 419 

MET1_winter Correlation Coefficient 0.128** 1.000 0.203** 

Sig. (2-tailed) 0.009 . 0.000 

N 419 419 419 

MET2_winter Correlation Coefficient -0.057 0.203** 1.000 

Sig. (2-tailed) 0.244 0.000 . 

N 419 419 419 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

 

Table 3.28. Correlation between CO2 level and MET values of occupants 3 and 4 in the 

winter season 

Correlations 

 

CO2_B12_ 

winter 

MET3_ 

winter 

MET4_ 

winter 

Spearman's rho CO2_B12_winter Correlation Coefficient 1.000 -0.101* -0.431** 

Sig. (2-tailed) . 0.038 0.000 

N 421 419 419 

MET3_winter Correlation Coefficient -0.101* 1.000 0.343** 

Sig. (2-tailed) 0.038 . 0.000 

N 419 419 419 

MET4_winter Correlation Coefficient -0.431** 0.343** 1.000 

Sig. (2-tailed) 0.000 0.000 . 

N 419 419 419 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table 3.29. Correlation between CO2 level and MET values of occupants 5 and 6 in the 

winter season 

Correlations 

 

CO2_B21_ 

winter 

MET5_ 

winter 

MET6_ 

winter 

Spearman's rho CO2_B21_winter Correlation Coefficient 1.000 0.095 -0.132** 

Sig. (2-tailed) . 0.051 0.007 

N 421 419 419 

MET5_winter Correlation Coefficient 0.095 1.000 0.075 

Sig. (2-tailed) 0.051 . 0.124 

N 419 419 419 

MET6_winter Correlation Coefficient -0.132** 0.075 1.000 

Sig. (2-tailed) 0.007 0.124 . 

N 419 419 419 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

 

Table 3.30. Correlation between CO2 level and MET values of occupants 7 and 8 in the 

winter season 

Correlations 

 

CO2_B22_ 

winter 

MET7_ 

winter 

MET8_ 

winter 

Spearman's rho CO2_B22_winter Correlation Coefficient 1.000 -0.222** -0.324** 

Sig. (2-tailed) . 0.000 0.000 

N 421 419 419 

MET7_winter Correlation Coefficient -0.222** 1.000 0.076 

Sig. (2-tailed) 0.000 . 0.121 

N 419 419 419 

MET8_winter Correlation Coefficient -0.324** 0.076 1.000 

Sig. (2-tailed) 0.000 0.121 . 

N 419 419 419 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table 3.31. Correlation between relative humidity and MET values of occupants 1 and 2 in 

the summer season 

Correlations 

 

RH_B11_ 

summer 

MET1_ 

summer 

MET2_ 

summer 

Spearman's rho RH_B11_summer Correlation Coefficient 1.000 0.142** -0.073 

Sig. (2-tailed) . 0.004 0.134 

N 421 419 419 

MET1_summer Correlation Coefficient 0.142** 1.000 0.204** 

Sig. (2-tailed) .004 . 0.000 

N 419 419 419 

MET2_summer Correlation Coefficient -0.073 0.204** 1.000 

Sig. (2-tailed) 0.134 0.000 . 

N 419 419 419 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

 

Table 3.32. Correlation between relative humidity and MET values of occupants 3 and 4 in 

the summer season 

Correlations 

 

RH_B12_ 

summer 

MET3_ 

summer 

MET4_ 

summer 

Spearman's rho RH_B12_summer Correlation Coefficient 1.000 -0.415** -0.469** 

Sig. (2-tailed) . 0.000 0.000 

N 421 419 419 

MET3_summer Correlation Coefficient -0.415** 1.000 0.094 

Sig. (2-tailed) 0.000 . 0.055 

N 419 419 419 

MET4_summer Correlation Coefficient -0.469** 0.094 1.000 

Sig. (2-tailed) 0.000 0.055 . 

N 419 419 419 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table 3.33. Correlation between relative humidity and MET values of occupants 5 and 6 in 

the summer season 

Correlations 

 

RH_B21_ 

summer 

MET5_ 

summer 

MET6_ 

summer 

Spearman's rho RH_B21_summer Correlation Coefficient 1.000 -0.067 -0.022 

Sig. (2-tailed) . 0.175 0.657 

N 406 406 406 

MET5_summer Correlation Coefficient -0.067 1.000 0.002 

Sig. (2-tailed) 0.175 . 0.963 

N 406 419 419 

MET6_summer Correlation Coefficient -0.022 0.002 1.000 

Sig. (2-tailed) 0.657 0.963 . 

N 406 419 419 

 

 

 

Table 3.34. Correlation between relative humidity and MET values of occupants 7 and 8 in 

the summer season 

Correlations 

 

RH_B22_ 

summer 

MET7_ 

summer 

MET8_ 

summer 

Spearman's rho RH_B22_summer Correlation Coefficient 1.000 -0.094 0.204** 

Sig. (2-tailed) . 0.058 0.000 

N 406 406 406 

MET6_summer Correlation Coefficient -0.094 1.000 0.049 

Sig. (2-tailed) 0.058 . 0.321 

N 406 419 419 

MET7_summer Correlation Coefficient 0.204** 0.049 1.000 

Sig. (2-tailed) 0.000 0.321 . 

N 406 419 419 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table 3.35. Correlation between relative humidity and MET values of occupants 1 and 2 in 

the winter season 

Correlations 

 

RH_B11_ 

winter 

MET1_ 

winter 

MET2_ 

winter 

Spearman's rho RH_B11_winter Correlation Coefficient 1.000 0.145** 0.009 

Sig. (2-tailed) . 0.003 0.849 

N 421 419 419 

MET1_winter Correlation Coefficient 0.145** 1.000 0.203** 

Sig. (2-tailed) 0.003 . 0.000 

N 419 419 419 

MET2_winter Correlation Coefficient 0.009 0.203** 1.000 

Sig. (2-tailed) 0.849 0.000 . 

N 419 419 419 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

 

Table 3.36. Correlation between relative humidity and MET values of occupants 3 and 4 in 

the winter season 

Correlations 

 

RH_B12_ 

winter 

MET3_ 

winter 

MET4_ 

winter 

Spearman's rho RH_B12_winter Correlation Coefficient 1.000 -0.064 0.364** 

Sig. (2-tailed) . 0.194 0.000 

N 421 419 419 

MET3_winter Correlation Coefficient -0.064 1.000 0.343** 

Sig. (2-tailed) 0.194 . 0.000 

N 419 419 419 

MET4_winter Correlation Coefficient 0.364** 0.343** 1.000 

Sig. (2-tailed) 0.000 0.000 . 

N 419 419 419 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table 3.37. Correlation between relative humidity and MET values of occupants 5 and 6 in 

the winter season 

Correlations 

 

RH_B21_ 

winter 

MET5_ 

winter 

MET6_ 

winter 

Spearman's rho RH_B21_winter Correlation Coefficient 1.000 -0.145** -0.107* 

Sig. (2-tailed) . 0.003 0.029 

N 421 419 419 

MET5_winter Correlation Coefficient -0.145** 1.000 0.075 

Sig. (2-tailed) 0.003 . 0.124 

N 419 419 419 

MET6_winter Correlation Coefficient -0.107* 0.075 1.000 

Sig. (2-tailed) 0.029 0.124 . 

N 419 419 419 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

 

Table 3.38. Correlation between relative humidity and MET values of occupants 7 and 8 in 

the winter season 

Correlations 

 

RH_B22_ 

winter 

MET7_ 

winter 

MET8_ 

winter 

Spearman's rho RH_B22_winter Correlation Coefficient 1.000 -0.015 -0.023 

Sig. (2-tailed) . 0.759 0.635 

N 421 419 419 

MET7_winter Correlation Coefficient -0.015 1.000 0.076 

Sig. (2-tailed) 0.759 . 0.121 

N 419 419 419 

MET8_winter Correlation Coefficient -0.023 0.076 1.000 

Sig. (2-tailed) 0.635 0.121 . 

N 419 419 419 

 

 

Spearman's rank correlation coefficient assesses the strength and direction of the monotonic 

relationship between two variables, regardless of whether the relationship is linear. 

Monotonicity means that as the values of one variable increase, the values of the other variable 
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either consistently increase or decrease. According to conducted correlation, the relationship 

between RH and MET as well as CO2 and MET are mostly negative which means that as RH 

or CO2 variable's ranks increase, the MET variable's ranks tend to decrease. Nevertheless, it 

can be concluded with test significance of 99% that those variables have significant 

relationship. 

3.4.2. Characteristics of individual groups for model creation 

The Move 3 wearable sensory device was employed to monitor building occupants and 

measure their daily metabolic rates. The data collected was utilized to assess the influence and 

importance of individual factors such as age, gender, and BMI on changes in occupants' 

metabolic rates. This data was also employed to analyze the thermal preferences of the 

occupants and establish the foundation for creating a model (given at the end of the subsection, 

in Table 3.45). For this purpose, non-parametric tests were carried out first, Mann-Whitney Test 

(for two independent groups) and Kruskal-Wallis Test (for three or more independent groups). 

Results of Mann-Whitney Test are presented according to cooling (Table 3.39) and heating 

season (Table 3.40) in order to explore is there a statistically significant difference between the 

average metabolic rate of users with regard to their gender. 

Table 3.39. Comparison of MET medians between males and females during the cooling 

season 

Ranks 

Gender N Mean Rank Sum of Ranks 

MET_cooling Female 2095 1561.60 3271548.00 

Male 1257 1868.00 2348080.00 

Total 3352     

 

Test Statisticsa 

  met_cooling 

Mann-Whitney U 
1075988.000 

Wilcoxon W 3271548.000 

Z -8.917 

Asymp. Sig. (2-tailed) 
0.000 

a. Grouping Variable: Gender 
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Table 3.40. Comparison of MET medians between males and females during the heating 

season 

Ranks 

Gender N Mean Rank Sum of Ranks 

MET_heating Female 2095 1812.56 3797321.00 

Male 1257 1449.73 1822307.00 

Total 3352     

 

Test Statisticsa 

  MET_heating 

Mann-Whitney U 
1031654.000 

Wilcoxon W 1822307.000 

Z -10.534 

Asymp. Sig. (2-tailed) 
0.000 

a. Grouping Variable: Gender 

 

Based on the Table 3.39 and Table 3.40, averaged MET among the female and male 

occupants is significantly different during the cooling and heating period. 

As described in Chapter 02, Participants in the field study research are categorized into three 

groups based on age (Table 2.8) to assess the significance of age differences in the average 

daily metabolic rate.  

Table 3.41 and Table 3.42 show the Kruskal-Wallis test results of the occupants' age 

difference, also presented according to cooling and heating season, respectively. 
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Table 3.41. Comparison of MET medians between groups of occupants with regard to their 

age during the cooling season 

Ranks 

Age N Mean Rank 

MET_cooling 1st age group 
2095 1693.65 

2st age group 
838 1570.68 

3st age group 
419 1802.37 

Total 3352   

 

Test Statisticsa.b 

  MET_cooling 

Chi-Square 17.938 

df 2 

Asymp. Sig. 0.000 

a. Kruskal Wallis Test 

b. Grouping Variable: Age 

 

Table 3.42. Comparison of MET medians between groups of occupants with regard to their 

age during the heating season 

Ranks 

Age N Mean Rank 

MET_heating 1st age group 
2095 1712.11 

2st age group 
838 1326.34 

3st age group 
419 2198.76 

Total 3352   

 

Test Statisticsa.b 

  MET_heating 

Chi-Square 235.688 

df 2 

Asymp. Sig. 0.000 

a. Kruskal Wallis Test 

b. Grouping Variable: Age 
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The results of the Kruskal-Wallis test indicate a statistically significant difference in 

metabolic rates among building occupants of varying ages. Additionally, there is only a 0.1% 

probability that this difference is attributed to chance. 

Further results of Kruskal-Wallis test are presented according to cooling (Table 3.43) and 

heating season (Table 3.44) in order to explore is there a statistically significant difference 

between the average metabolic rate of users with regard to BMI. 

Table 3.43. Comparison of MET medians between groups of occupants with the different BMI 

during the cooling season 

Ranks 

BMI N Mean Rank 

MET_cooling normal 2095 1699.62 

overweight 
838 1788.19 

obese 419 1337.51 

Total 3352   

 

Test Statisticsa.b 

  MET_cooling 

Chi-Square 64.383 

df 2 

Asymp. Sig. 0.000 

a. Kruskal Wallis Test 

b. Grouping Variable: BMI 
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Table 3.44. Comparison of MET medians between groups of occupants with the different BMI 

during the heating season 

Ranks 

BMI N Mean Rank 

MET_heating normal 2095 1940.72 

overweight 
838 1192.05 

obese 419 1324.29 

Total 3352   

 

Test Statisticsa.b 

  MET_heating 

Chi-
Square 

423.652 

df 2 

Asymp. 
Sig. 

0.000 

a. Kruskal Wallis Test 

b. Grouping Variable: BMI 

 

Based on Table 3.43 and Table 3.44, averaged MET values among the three groups of 

people (of normal body mass, overweight and obese) are significantly different during the 

cooling and heating period. 

Finally, according to the conducted tests of significant parameters relating MET values on 

the collected measurement data, Table 3.45 was created as the creation base for the further 

model, in which occupants are categorized into 3 groups conforming to similar metabolic rate 

trends and personal characteristics. 

Table 3.45. Characteristics of individual groups 

 
 

Thermal comfort according to metabolic rates 

Description 

 
Hot 

[met] 
Warm 
[met] 

Neutral 
[met] 

Cold 
[met] 

Group 
1 

≥ 2.3 1.7 – 2.3 1.4 – 1.7 
Not  

recorded 

1st age group 
 higher temperature acceptance range  

mostly females 

Group 
2 

≥ 2 1.9 – 2 1.5 – 1.9 
Not  

recorded 

1st age group 
higher activity level 

mostly males 

Group 
3 

≥ 1.8 1.5 – 1.8 1.3 – 1.5 ≤ 1.3 
2nd and 3rd age group 
narrow comfort range 
people with high BMI 
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Observations indicate that occupants with higher BMI tend to have a lower average 

metabolic rate. Consequently, they tend to experience a sensation of cold earlier than 

individuals in Group 1 and Group 2. Group 1 represents occupants with a broader acceptance 

range for temperatures. Conversely, Group 2 exhibits a wider neutral temperature range, 

meaning that activities exceeding 1.5 met do not induce a sensation of warmth due to their 

higher physical fitness and physiological adaptation. Group 3 represents the occupants which 

are mostly of higher BMI (compared to the other groups) and have a small range of 

environmental parameters within which they feel comfortable. 

3.4.3. Neural network modeling of metabolic rate  

As it was explained in previous chapter, the modeling approach employed artificial neural 

networks, with a specific focus on utilizing the multilayer perceptron [53] as a valuable tool for 

the intended purpose. The occupants were divided into three different groups (Table 3.45) 

which were developed according to the correlation of the experimentally obtained MET values, 

the environmental conditions and occupant’s individual differences. For both the cooling 

season (spring and summer) and the heating season (autumn and winter), a distinct model was 

created for each group.  

Consequently, a total of six simulation models were developed to establish the relationship 

between input parameters and analyzed outputs. These models specifically link MET values 

with specific thermal comfort conditions, including air temperature, air relative humidity, and 

CO2 levels:  

• Model 1: defines the relationship between the input factors of air temperature, relative air 

humidity and the level of carbon dioxide in the air (conditions in the working environment) and 

the metabolic effect of Group 1 for the cooling period;  

• Model 2: defines the relationship between the input factors of air temperature, relative air 

humidity and the level of carbon dioxide in the air (conditions in the working environment) and 

the metabolic rate of Group 2 for the cooling period;  

• Model 3: defines the relationship between the input factors of air temperature, relative air 

humidity and the level of carbon dioxide in the air conditions in the working environment) and 

the metabolic rate of Group 3 for the cooling period;  
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• Model 4: defines the relationship between the input factors of air temperature, relative air 

humidity and the level of carbon dioxide in the air (conditions in the working environment) and 

the metabolic rate of Group 1 for the heating period;  

• Model 5: defines the relationship between the input factors of air temperature, relative air 

humidity and the level of carbon dioxide in the air (conditions in the working environment) and 

the metabolic rate of Group 2 for the heating period;  

• Model 6: defines the relationship between the input factors of air temperature, relative air 

humidity and the level of carbon dioxide in the air (conditions in the working environment) and 

the metabolic rate of Group 3 for the heating period.  

The total amount of data for analysis was reduced to 28, which is equal to a 15-minute 

sensor reading.  

The experimental data underwent normalization using the provided expression to mitigate 

the influence of dominant functions and enhance convergence speed. The normalization was 

performed within the interval [a, b], which was specified as [-1, 1], respectively [91]: 

𝑥n = (𝑏 − 𝑎)
𝑥0 − 𝑥min

𝑥max − 𝑥min
+ 𝑎                                                  (3.1) 

where 𝑥n and 𝑥0 are normalized and original data, while 𝑥min and 𝑥max are minimal and 

maximal values. 

After collecting, filtering and preparing the data, it was necessary to divide all collected 

data into a set for training the network, a set for testing and a set for validating the developed 

model. The generalization and robustness of the model was checked on randomly selected data 

from the testing and validation sets. 

70% of experimentally collected data, chosen at random, were employed to train the multi-

layer perceptron and develop the six specified mathematical models. 15% of randomly selected 

experimental data were designated for testing purposes, while another 15% were allocated for 

validating the created models.  

The model was derived using a neural network featuring one hidden layer, given the 

assumption of a single output. The architecture of the multilayer perceptron is 3–3–1, i.e. three 

neurons in the input layer, three neurons in the hidden layer and one neuron in the output layer 

for each analyzed response (Figure 3.30). 
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Figure 3.30. Architecture of the multilayer perceptron 

The number of neurons (𝑚) in the hidden layer is defined according to the following 

expression [91]:  

𝑚 ≤ (𝑁tr − 1)/(𝑛 + 2)                                                         (3.2) 

 

where 𝑁tr is the number of available data for network training and 𝑛 is number of input 

parameters. 

Model testing and validation is performed using datasets that have not yet been presented 

to the artificial neural network. Before the actual training process, the initialization of weight 

connections and thresholds of the neurons of the hidden and output layers of the perceptron was 

performed using the Nguyen-Widrow method. Thus, the weights are spread out in a way that 

prevents saturation while still maintaining an appropriate range. This helped to speed up the 

training process and improve the overall performance of the neural network.  

The tansigmoid function in the hidden layer and the simple linear function in the output 

layer of the multilayer perceptron were used as activation functions.  

Multi-layer perceptron training was done for establishing connections between process 

input factors and analyzed responses, i.e. determination of parameter values of 𝑤𝑗𝑖 (weight 

connections between input 𝑖 and hidden 𝑗 neuron), 𝑏𝑗 (threshold of the hidden 𝑗 neuron), 𝑤𝑘𝑗 

(weight connections between the 𝑗 hidden neuron and the 𝑘 output neuron) and 𝑏𝑘 (threshold 

of the output neuron).  

The creation of mathematical models of all responses was performed using the  

Levenberg-Marquardt algorithm. It is one of the fastest algorithms for training a multilayer 

perceptron of small and medium sizes (up to a hundred free parameters). This algorithm can 

converge 10 to 1,000 times faster compared to conventional training algorithms, which means 

there is less danger of getting stuck in a local minimum, and at the same time it achieves a high 
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prediction accuracy [92]. Iterative weight change when applying the Levenberg-Marquardt 

algorithm is performed according to the following expression [91]:  

𝑤𝑡+1 = 𝑤𝑡 + [𝐽𝑡
𝑇 𝐽𝑡 + 𝜇 𝐼]−1 𝐽𝑡

𝑇 𝐸𝑡                                                         (3.3) 

 

where 𝐽 is the Jacobian matrix of error derivatives by weight, 𝐼 is the identity matrix and 𝜇 

momentum (the learning parameter), 𝑡 is number of iterations, and 𝐸 is error. 

The learning parameter 𝜇, momentum, is a small scalar quantity that controls the training 

process of an artificial neural network. Its value changes during the training process itself. 

Starting from the initial value, after each successful iteration when the error is reduced, 𝜇 is 

reduced by ∆𝜇. 

The mean square error (MSE) was chosen as the objective function in the training process. 

For each combination of process input factors, a comparison was made between the predicted 

response value obtained by the model and the one obtained experimentally. This was done using 

the root mean square error according to the following expression [91]: 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − 𝑑𝑖)

2

𝑁

𝑖=1

                                                         (3.4) 

where 𝑁 is the number of randomly selected data from the specific group, 𝑦𝑖 represents the 

estimated value gained by the model, and 𝑑𝑖 represents the value gained by experiment. 

In each iteration, the value of the weight link is changed by the partial derivative of the error 

in relation to the set weight link via the learning coefficient and the change of the same weight 

link in the previous iteration via momentum. Learning coefficient and momentum control the 

stability and training speed of an artificial neural network.  

Training epochs denote the iterations in which the developed artificial neural network is 

presented with input data. The error backpropagation algorithm ensures that the network 

training error decreases in parallel as the number of epochs increases. However, with too many 

epochs, the so-called "over-training problem" or the problem of network overtraining. In this 

case, the artificial neural network has learned the training data very well, but not the 

relationships between the input factors and the response, and then its generalization is very 

poor. Most often, the number of training epochs of a network that has good generalization is 

determined by the "trial-error" method, by the method of early stop training, or by Bayesian 

regularization [93]. 
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After the training of the artificial neural network model was completed, the values of 

approximately optimal weight connections and thresholds of the hidden and output layers of 

the multi-layer perceptron were determined. The obtained values are listed for each model in 

the following tables (Table 3.46 to Table 3.51). 

Table 3.46. Weights and thresholds of the artificial neural network model for Model 1 

 𝒘𝒋𝒊  𝒘𝒌𝒋  𝒃𝒋  𝒃𝒌 

-6.5338 -4.681 -6.3905 6.563 7.1178 -7.4991 

-3.2362 27.2847 8.2502 9.2956 17.0489  

4.973 -36.2664 -11.1241 8.6416 -21.9668  

 

Table 3.47. Weights and thresholds of the artificial neural network model for Model 2 

 𝒘𝒋𝒊  𝒘𝒌𝒋  𝒃𝒋  𝒃𝒌 

78.7585 -21.6102 104.4434 -2.1018 8.0617 -1.0025 

-48.9851 50.5038 -99.3929 -2.1638 -10.0954  

39.8134 -28.16 10.9721 0.17015 52.834  

 

Table 3.48. Weights and thresholds of the artificial neural network model for Model 3 

 𝒘𝒋𝒊  𝒘𝒌𝒋  𝒃𝒋  𝒃𝒌 

-6.9747 8.7169 -11.129 9.5356 -9.7814 1.1527 

-3.7378 -46.3746 -3.4533 0.26391 -31.8661  

-17.2123 -14.8331 16.9222 8.3466 8.1478  

 

Table 3.49. Weights and thresholds of the artificial neural network model for Model 4 

 𝒘𝒋𝒊  𝒘𝒌𝒋  𝒃𝒋  𝒃𝒌 

1.4799 1.405 0.10561 -1.7263 -1.4532 -0.76881 

-0.2961 -2.6878 -1.6867 -0.73367 2.5293  

-2.6704 0.53954 1.7618 -1.2042 -0.50402  
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Table 3.50. Weights and thresholds of the artificial neural network model for Model 5 

 𝒘𝒋𝒊  𝒘𝒌𝒋  𝒃𝒋  𝒃𝒌 

-0.23761 0.077486 -0.40571 -16.0506 0.29646 -2.2141 

11.6091 5.4869 6.384 1.0135 -9.238  

2.5787 -0.060617 3.4739 -9.3951 -0.89577  

 

Table 3.51. Weights and thresholds of the artificial neural network model for Model 6 

 𝒘𝒋𝒊  𝒘𝒌𝒋  𝒃𝒋  𝒃𝒌 

43.4967 -1.506 37.6886 38.9685 0.45429 -39.329 

65.8096 -1.6068 44.9961 -39.4559 -2.852  

30.0186 3.5846 -6.5589 39.0788 8.013  

 

Based on the obtained weights and thresholds values of the artificial neural network model, 

taking into account the shape of the activation functions in the hidden and output layers and the 

architecture of the multilayer perceptron, the relationship between the input factors of the 

process and the response can be expressed with a mathematical equation: 

𝑀 = [
2

1 + 𝑒−2 (𝑋 𝑤𝑗𝑖 + 𝑏𝑗)
− 1] 𝑤𝑘𝑗 + 𝑏𝑘                                      (3.5) 

where: 

𝑀 represents output vector (MET), 

𝑋 represents vector of input parameters, 𝑋 = {𝑡a, CO2, 𝑅𝐻}, 

𝑤𝑗𝑖 represents weight connections between input 𝑖 and hidden 𝑗 neuron,  

𝑏𝑗 represents threshold (bias) of the hidden 𝑗 neuron, 

𝑤𝑘𝑗 represents weight connections between the 𝑗 hidden neuron and the 𝑘 output neuron, 

𝑏𝑘 represents threshold of the output neuron. 

 

Table 3.52 shows the characteristics of these models, the numbers of training epochs and 

the values of the obtained mean square errors during training, testing and validation of the 

artificial neural network. 
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Table 3.52. Artificial neural network models’ characteristics obtained on the basis of all 

available experimental results 

ANN model Number of training epochs 

Mean square error (MSE) 

Training Data Testing Data Validation Data 

Model 1 20 0.1011 0.3516 0.4784 

Model 2 20 0.05789 0.01825 0.008767 

Model 3 20 0.1312 0.2974 0.2358 

Model 4 20 0.05839 0.08044 0.0412 

Model 5 22 0.06265 0.1188 0.06506 

Model 6 20 0.05984 0.131 0.07315 

 

The outcomes presented in Table 3.52 indicate that the developed artificial neural network 

models exhibit a satisfactory level of accuracy in prediction and generalization. Consequently, 

these models can be effectively employed for both identifying and examining the connections 

between input variables related to environmental parameters and the corresponding attributes 

of MET values. 

Furthermore, these models serve as the foundation for forthcoming experiments. Upon 

receiving new measurements, the existing models are retrained, leading to enhanced and more 

comprehensive models. This iterative approach ultimately contributes to the formation of an 

expert system. This system's primary function is to forecast the response attributes of metabolic 

rate predictions based on variations in input variable values. 

The graphic representations of the influence of factors on the analyzed responses are given 

in the following figures (Figure 3.31 to Figure 3.36), together with correlation coefficients on 

data sets for training, testing and validation during model creation. As an additional measure of 

the prediction accuracy of the obtained artificial neural network models, comparison of 

simulation models with experimental data are also presented. 
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Figure 3.31. Comparison between simulation model with experimental MET response of 

Group 1 during cooling period 
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Figure 3.32. Comparison between simulation model with experimental MET response of 

Group 2 during cooling period 
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Figure 3.33. Comparison between simulation model with experimental MET response of 

Group 3 during cooling period 
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Figure 3.34. Comparison between simulation model with experimental MET response of 

Group 1 during heating period 
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Figure 3.35. Comparison between simulation model with experimental MET response of 

Group 2 during heating period 
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Figure 3.36. Comparison between simulation model with experimental MET response of 

Group 3 during heating period 
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The overall models’ prediction accuracy was above 70%. The created artificial neural 

network models have a satisfactory prediction and generalization accuracy (above 90%), and 

accordingly can be used further to define and analyze the relationship between the residential 

conditions and the response characteristics of the user's metabolic rate. Also, developed models 

obtained in this way represent the basis for further experiments and the smart systems creation 

will serve to predict the thermal comfort conditions in the room depending on changes in values 

input factors. Thus, more reliable management of room conditions to achieve individual 

occupants' thermal could be established.  
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4. OVERVIEW OF THE SCIENTIFIC CONTRIBUTIONS 

The main scientific contributions achieved are as follows: 

i) Proposal and development of a novel methodological approach of connecting the 

measured data of indoor thermal conditions with the occupant’s subjective response 

(thermal sensation votes).  

ii) Model development of an occupant’s metabolic rate as a function of the office 

building thermal conditions (𝑡a, CO2, 𝑅𝐻) using neural networks as well as 

contribution to the methodological analysis and the general approach to 

understanding the trends of changes in the value of the occupant’s metabolic rate in 

office spaces during working hours.  

iii) Proposal of a correction of metabolic rate’s standardized values with regard to 

individual characteristics of people. 
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5. CONCLUSION 

As learned from reviewed studies in field of thermal comfort, in most buildings, HVAC 

systems are regulated according to room temperature and humidity conditions, assuming a 

constant value for occupants' clo and MET based on standard values. Those human factors often 

do not accurately reflect the real-life, dynamic behavior of occupants as there is a significant 

deviation in meny cases. 

Most thermal comfort model investigations are confined to specific environments, with only 

a few addressing human responses under both non-uniform and transient conditions, 

incorporating detailed thermoregulation models. Furthermore, even the established standards 

are unsuitable to take into account the comfort level in real-life circumstances. This occurs 

because these methods are designed to forecast the average comfort of a broad population. 

Consequently, their precision diminishes when forecasting the thermal comfort responses of 

individuals, as there are substantial variations in thermal comfort among people.  

It is crucial to move beyond the existing standards of indoor environmental quality, which 

are based on population-centered criteria, and instead, focus on meeting the needs and 

preferences of individuals as and when required. To improve occupant’s PMV index, it is 

necessary to improve accuracy of its parameter, metabolic rate. 

Due to the challenges associated with directly measuring MET using simple sensor devices, 

it is commonly approximated as a fixed default value when calculating the PMV index. 

Therefore, the methodology investigated in this study using artificial intelligence enables 

reflecting the real-time MET model based on input data of the occupants’ physical activities, 

considering their individual differences. 

For the purpose of determinations which of the comfort parameters of the working 

environment are statistically significant for office space occupants, a preliminary study was 

conducted using surveys. According to the sample of 35 randomly selected occupants of 

different age, gender, and years of experience working in a different job position in the same 

office building, physical parameters which significantly affect the occupants’ satisfaction of the 

thermal environment are obtained. They are indoor air temperature and air quality in terms of 

relative humidity and carbon dioxide. 
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These parameters are considered in subsequent investigations to ensure that ventilation 

systems, particularly in high-density occupancy zones, are delivering the recommended 

minimum quantities of outside air to the building's occupants. 

Improved air quality would make occupants feel safer, especially considering recent 

pandemic cirumstances. Optimum air quality is paramount for employee health and confidence 

in returning to the workplace.  

The year-round centered on observing 8 occupants in two office buildings following 

identical schedules and patterns, albeit situated in contrasting climates: the typical continental 

city of Zagreb and the Mediterranean city of Split, Croatia. The research focused on monitoring 

the thermal comfort conditions in these settings using TROTEC BZ30 Data Logger devices and 

evaluated both qualitatively and quantitatively. 

The primary focus of the study was to explore the potential provided by the integration of 

wearable sensors in investigating thermal comfort conditions and modeling the individual and 

dynamically changing metabolic rates of occupants, considering their unique differences in 

office buildings. The thermal perception of individuals within their working surrounding was 

also assessed using wearable sensory device movisens Move 3. 

The measurement took place 4 times during the year encompassing all seasons (spring, 

summer, autumn and winter) lasting 7 working days each time. 

Sensors recorded data on a 1-minute scale, so the total number of collected data for air 

temperature is 53,760, relative humidity is 53,760, carbon dioxide is 53,760 and raw data for 

metabolic rate calculation is 93,856. Apart from sensor data, the total number of occupants’ 

TSV collected is 672. 

On the basis of the conducted field measurements, as well as the implementation of a survey, 

the conditions of thermal comfort in the considered premises were analyzed, and the 

satisfactions of the occupants in specific working conditions were verified. The level of clothing 

and the metabolic rate were analyzed for each individual occupant.  

The research showed that office occupants of Building A and Building B consider the 

average office air temperature of 26 C high, while in spring; occupants are the most dissatisfied 

with the air temperature in the room. The transitional regime from one season to another has 

proven to be critical for thermal comfort conditions. Hence, it is recommended to consider 

technical interventions on the existing regulation systems in buildings (or introduce new, more 
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energy efficient technologies). An average carbon dioxide level of 670 ppm is deemed highly 

satisfactory, and dissatisfaction arises as the CO2 concentration in the air approaches the 700 

ppm threshold. The feeling of fresh air is achieved by frequent changes of air in the room 

mechanically by ventilation, as well as naturally by opening windows. Furthermore, the 

investigation conducted herein revealed the significance of carbon dioxide levels in relation to 

thermal comfort. The CO2 concentrations observed in the surveyed offices were notably lower 

than the levels recommended by standards. It's crucial to emphasize the strong correlation 

between CO2 levels and indoor air temperature. Importantly, this factor is largely influenced 

directly by the occupants.  

Relative air humidity of 40% is perceived by occupants as "dry to satisfactory" air. 

Occupants of both buildings perceive the air as humid when the average relative humidity in 

the air is 50%. The fact of very low humidity during the heating period, primarily in Building 

B indicates the adaptation of occupants to non-standard conditions.  

The calculated PMV value according to Fanger's model for predicting thermal comfort 

mostly does not fit into the given standards for considered case. In the summer, the air 

conditioning system is not able to achieve lower temperatures. On the other hand, the set 

temperature does not represent sufficient comfort for the occupants in terms of heating the 

office spaces in the winter.  

Moreover, both humidity and temperature levels were found to deviate from acceptable 

limits. The analyzed data illustrated how a compact office housing only two employees could 

result in environmental conditions surpassing acceptable thresholds.  

In general, it has been observed that elderly individuals tend to favor lower temperatures in 

the warmer months. The range of air temperatures considered comfortable for older people is 

narrower than for younger people. The cause of this is most likely the decline in the ability to 

regulate thermoregulation with age. With regard to gender, the female population is more 

critical in relation to indoor thermal comfort conditions and is also more sensitive to deviations 

from optimal thermal comfort conditions, especially in colder conditions. This is also supported 

by the fact that the female population usually has a higher level of clothing than men during the 

same season.  

Nevertheless, women are more inclined to change the level of clothing during working 

hours, which allows them a greater level of adaptability to different thermal conditions, as well 

as a greater range of acceptable temperatures than men. Furthermore, it has been observed that 
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people with a higher BMI have a lower level of clothing and are generally more sensitive to 

changes in temperature, especially when it rises to higher values compared to the optimal value.  

Based on the analysis of the feasibility of utilizing the wearable sensor in thermal comfort 

investigation, a great potential of possible application was observed as they can personally, 

unobtrusively and dynamically measure desired parameters. After the conducted study, 

occupants stated the wearable sensors did not elicit any discomfort for them. Additionally, 

Move 3 contributed valuable input data for the analysis and the modeling of personal thermal 

comfort, particularly by offering precise information regarding the dynamic fluctuations in the 

occupants' metabolic rates throughout working hours. The MET response typically fluctuated 

between values of 1.0 and 2.0, which, according to standards, is relatively high for office 

activities. This suggests the impracticality of using static MET values in computing PMV 

indexes. In contrast to traditional table reading methods, this study demonstrated that Move 3 

is better suited for this type of testing. 

The gathered data served the purpose of analyzing occupants' thermal preferences and 

forming the foundation for creating the model (Table 3.45). Additionally, the collected data 

were utilized to assess the impact and significance of individual factors such as age, gender, 

and BMI on changes in occupants' metabolic rates. The results from the Mann-Whitney Test 

revealed a statistically significant difference in the mean metabolic rate during the working day 

between males and females. Furthermore, the Kruskal-Wallis Test indicated a statistically 

significant difference among building occupants of varying ages and BMI.  

Main conclusions about personal comfort parameters in correlation with metabolic rate are 

one that men usually have higher MET values than women. However, there is age as important 

variable to be considered when observing MET variations. Older people on average have a 

lower level of activity, and therefore lower MET values. Furthermore, occupants with high BMI 

have lower average metabolic rate.  

In addition, there is an observed correlation between energy expenditure and variations in 

individuals' comfort sensations. Energy expenditure is inherently linked to the metabolic rate 

of occupants. It has been demonstrated that the metabolic rate not only changes over time in the 

case of an individual but also differs among different people engaging in similar daily activities.  

Artificial neural network models were created for certain groups of occupants and for 

certain seasons. As per the formulated group models, algorithms are tailored to specific 
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occupant profiles, considering an individualized approach and accounting for various potential 

circumstances within the office premises.  

The proposed models include the most important input comfort variables (air temperature, 

carbon dioxide variation and relative humidity) according to the preliminary study and MET 

variable as an output. 

From total number of 419 averaged MET values per occupant, per season, reading was 

reduced on a 15-minutes level. Further, 70% of data was used for training, 15% for testing and 

15% for validation. The models were created based on the training data, and then it was verified 

based on the validation and testing data. The training data’s coefficient of correlation was above 

0.7, which aligns well with the conducted measurement’s data. More importantly, the validation 

and testing data’s coefficient of correlation was above 0.9 for all six models, which means that 

the models exhibit favorable predictive and generalization accuracy. The modeling approach 

demonstrated that reasonable and fairly accurate results could be achieved, providing a 

foundation for ensuring optimal thermal conditions in office buildings. 

Obtained MLP models are highly parameterized models. Each neuron in the network has 

its set of weights and biases, making the model expressive and capable of learning complex 

relationships in the data. Adjusting these parameters allows the model to fine-tune its 

performance on a specific task. MLPs can be scaled up by adding more layers and neurons to 

the network, which often improves their performance.  

If hyperparameters, architecture design, and regularization techniques to avoid overfitting 

and achieve the best performance on a given task are carefully considered, adjusting MLP 

models is relatively easy. 

Furthermore, the models that were developed through this approach provide the 

fundamental framework for subsequent experimentation. They laid the groundwork for the 

creation of intelligent systems, which will play a role in forecasting office's thermal comfort 

conditions based on fluctuations in input parameter values. This, in turn, enables more 

dependable control of room conditions, ultimately leading to the attainment of personalized 

thermal comfort for individual occupants. 

 



 

 

 

Nikolina Pivac – Doctoral Thesis  116 

 

5.1. Future research work 

Future research work will concentrate on refining the logic of control regulation algorithms 

tailored for specific occupant profiles, incorporating an individualized approach and addressing 

various potential circumstances within office premises. This includes the necessity for 

standardization and the development of procedures to determine occupant MET profiles.  

It is also possible to upgrade current models by taking other individual differences such as 

pregnancy situation and race of the subjects into account. 

In addition, newly available and herein developed MET models based on environmental 

data as well as occupants’ individual comfort have a high potential for developing new personal 

models to predict human thermal sensation. Furthermore, these models are perfectly suitable to 

create an integrated smart building system which could adjust the indoor environment to a 

required comfort level of the building occupants. Finally, with an upgraded energy system 

regulation, it would be possible to evaluate the potentials of energy savings in buildings and 

which is one of the key goals of ongoing energy transition.  
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