
Machine Learning Methods for Efficient Data
Reduction and Reconstruction in the concept of
Internet of Things

Čulić Gambiroža, Jelena

Doctoral thesis / Disertacija

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture /
Sveučilište u Splitu, Fakultet elektrotehnike, strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:179:106445

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-01-04

Repository / Repozitorij:

Repository of the Faculty of Electrical Engineering,
Mechanical Engineering and Naval Architecture -
University of Split

https://urn.nsk.hr/urn:nbn:hr:179:106445
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fesb.unist.hr
https://repozitorij.fesb.unist.hr
https://repozitorij.fesb.unist.hr
https://repozitorij.svkst.unist.hr/islandora/object/fesb:1250
https://dabar.srce.hr/islandora/object/fesb:1250

Jelena Čulić Gambiroža

MACHINE LEARNING METHODS FOR EFFICIENT
DATA REDUCTION AND RECONSTRUCTION IN

THE CONCEPT OF INTERNET OF THINGS

DOCTORAL THESIS

Split, 2023.

U N I V E R S I T Y O F S P L I T
FACULTY OF ELECTRICAL ENGINEERING, MECHANICAL ENGINEERING

AND NAVAL ARCHITECTURE

Split, 2023.

U N I V E R S I T Y O F S P L I T
FACULTY OF ELECTRICAL ENGINEERING, MECHANICAL ENGINEERING

AND NAVAL ARCHITECTURE

Jelena Čulić Gambiroža

Machine Learning Methods for Efficient Data Reduction
and Reconstruction in the concept of Internet of Things

DOCTORAL THESIS

The research reported in this thesis was carried out at University of Split, Faculty of
Electrical Engineering, Mechanical Engineering and Naval Architecture.

Supervisor: Full Professor Mario Čagalj, PhD, FESB, University of Split, Croatia
Disertation number: 195

BIBLIOGRAPHIC INFORMATION

Keywords: Internet of Things, IoT, Sensors, Machine learning, Time series, Signal
pattern recognition, Energy efficiency
Scientific area: Technical sciences
Scientific field: Computer science
Scientific branch: Information processing
Institution of PhD completion: University of Split, Faculty of Electrical Engineering,
Mechanical Engineering and Naval Architecture
Supervisor of the thesis: Full Professor Mario Čagalj, PhD
Number of pages: 119
Number of figures: 54
Number of tables: 16
Number of references: 139

ii

Committee for assessment of doctoral dissertation:

1. Full Professor Dinko Begušić, PhD, FESB, University of Split, Croatia

2. Adjunct Professor Darko Huljenić, PhD, Ericsson Nikola Tesla, Zagreb and FER,
University of Zagreb, Croatia

3. Associate Professor Ivo Stančić, PhD, FESB, University of Split, Croatia

4. Assistant Professor Maja Braović, PhD, FESB, University of Split, Croatia

5. Senior Research Associate Ivana Nižetić Kosović, PhD, Split, Croatia

Committee for defence of doctoral dissertation:

1. Full Professor Maja Štula, PhD, FESB, University of Split, Croatia

2. Adjunct Professor Darko Huljenić, PhD, Ericsson Nikola Tesla, Zagreb and FER,
University of Zagreb, Croatia

3. Full Professor Damir Krstinić, PhD, FESB, University of Split, Croatia

4. Associate Professor Ivo Stančić, PhD, FESB, University of Split, Croatia

5. Assistant Professor Maja Braović, PhD, FESB, University of Split, Croatia

Dissertation defended on: 17. 11. 2023.

iii

Machine Learning Methods for Efficient Data Reduction and Reconstruction
in the concept of Internet of Things

Abstract:

The concept of Internet of Things (IoT) has grown in recent years, and the number of
IoT devices is rapidly increasing. Consequently, the amount of collected and stored data
is increasing, thus leading to Big data and its related challenges. While individual IoT
sensors consume a relatively small amount of energy, they are mostly battery powered and
numerous, which limits their lifetime and creates a great load on the backend systems. The
main goal of herein presented research is to detect places in the IoT network where data
velocity and volume reductions can be made while preserving the value and variety of the
data. Through the research, three challenges were tackled. The first two challenges address
the issue of sensor online time reduction and the effect on battery life prolongation. The third
challenge mitigates risks introduced by reducing the amount of data circulating through the
IoT network, as well as simplifying the configuration process when adding new sensors to
an IoT network. The thesis is structured accordingly.
In the first part of research, we propose a dynamic monitoring frequency (DMF) algorithm
that aims at collecting data only when sensor readings change by more than a tolerable value
between consecutive readings. Thus, a sensor is turned on only when a change in monitored
phenomenon value exceeds a predefined threshold. Two algorithms are analysed, namely
statistical and machine learning. DMF shows notable performance, resulting either with up
to ∼ 70% less missed readings, or collects up to ∼ 40% less data compared to the baseline
algorithm that collects data with static monitoring frequency.
The focus of the second part of the research are low-cost sensors as they need to preheat for
several minutes to reliably collect monitored value from the environment. However, instead
of waiting for a sensor to heat up, a transient, i.e., a data trend that the sensor collects while
heating up is analysed. It is shown that long short-term memory (LSTM) neural network can
be used to learn and later predict actual value from a part of the transient. This way, instead
of being constantly online or fully preheating, the sensor needs to be turned on for only 20
seconds and then sleep for 120 seconds. Our approach decreases energy consumption with
high accuracy up to 85% compared to a system where sensors are constantly online, and
more than 50% compared to a system where a sensor collects actual values instead of a part
of the transient.
In the third part of the research, different approaches for signal type classification that can be
used to recognise a signal type being read from an IoT sensor are evaluated and compared.
This is performed by using the machine learning methods for modeling a signal represented
as raw time series data. Three machine learning classification approaches are taken into

iv

a consideration, namely one class, two class and multi class. According to the results of
the evaluation, the most accurate multi class random forest algorithm can correctly classify
unknown signals in ∼ 75% of the cases based on only 20 consecutive sensor readings.
Moreover, multi class random forest can detect two most probable classes of monitored
signal with the accuracy of 95%.

Keywords:
Internet of Things, IoT, Sensors, Machine learning, Random forest, LSTM, Time series,
Signal pattern recognition, Energy efficiency

v

Metode strojnog učenja za učinkovito smanjenje količine podataka i njihovu
rekonstrukciju u konceptu Interneta stvari

Sažetak:

Koncept Interneta stvari (engl. Internet of Things - IoT) u posljednje vrijeme sve se više širi,
a broj IoT ured̄aja sve se više povećava. Posljedično, povećava se i količina prikupljenih i
pohranjenih podataka, što dovodi do izazova prepoznatih unutar koncepta Velikih podataka
(engl. Big data concept). Pojedinačni IoT senzori troše relativno malu količinu energije,
no napajaju se uglavnom baterijama koje imaju ograničen vijek trajanja. Osnovni cilj ovog
istraživanja je pronaći područja u IoT mreži na kojima se može smanjiti brzina prikupljanja
i volumen podataka, pritom uzimajući u obzir raznolikost podataka i njihovu vrijednost.
U istraživanju su adresirana tri izazova. Prvi i drugi izazov bave se smanjenjem vremena
rada senzora što rezultira produživanjem životnog vijeka baterije. Treći izazov smanjuje
rizike koji proizlaze iz smanjenja količine podataka koji se šalju kroz IoT mrežu, te takod̄er
pojednostavljuje konfiguracijski proces prilikom dodavanja novog IoT senzora u mrežu.
Disertacija je strukturirana u skladu s 3 navedena izazova.
Kroz prvi dio istraživanja, predložen je algoritam s dinamičkom frekvencijom/periodom
prikupljanja podataka (DMF) koji prikuplja podatke samo kada se očekuje značajna promjena
izmed̄u uzastopnih očitanja. Stoga se senzor uključuje samo kada se očekuje da će se
promatrana vrijednost promijeniti više od toleriranog raspona. Pritom se analiziraju i
uspored̄uju statistički pristup i pristup strojnog učenja. U usporedbi s algoritmom koji
prikuplja podatke sa statičkom frekvencijom/periodom prikupljanja, DMF algoritam
pokazuje značajno poboljšanje te rezultira s do ∼ 70% manje nedetektiranih promjena ili
s do ∼ 40% manje prikupljenih podataka.
Drugi dio istraživanja bavi se niskobudžetnim senzorima kojima je potrebno prethodno
zagrijavanje prije nego postignu stabilne radne uvjete. Na primjeru senzora plina, umjesto
čekanja da senzor postigne stabilne radne uvjete, analizira se početni dio tranzijenta, odnosno
trend podataka koje senzor prikuplja dok se zagrijava. Pokazano je da je primjenom Long
Short-Term Memory (LSTM) neuralne mreže moguće predvidjeti stvarnu razinu plina iz
početnog dijela tranzijenta. Na taj način, umjesto da se senzor u potpunosti zagrije, dovoljno
ga je uključiti na 20 sekundi i zatim ga staviti u stanje mirovanja 120 sekundi. S visokom
preciznošću ovakav pristup smanjuje potrošnju energije na strani senzora do 85%, u
usporedbi sa sustavima u kojima je senzor konstantno upaljen, odnosno više od 50% u
usporedbi sa sustavima kada se senzor u potpunosti zagrijava.
Kroz treći dio istraživanja uspored̄uju se različiti pristupi klasifikacije tipa signala koji se
mogu koristiti za prepoznavanje tipa signala kojeg prikuplja pojedini senzor. Pritom se
koriste metode strojnog učenja. Analizirana su tri pristupa klasifikacije signala, odnosno

vi

prepoznavanje tipa signala na temelju jedne klase, na temelju dvije klase i na temelju više
klasa. Rezultati pokazuju da najtočniji pristup, klasifikacija na temelju više klasa korištenjem
random forest algoritma, može ispravno klasificirati nepoznati signal u ∼ 75% slučajeva
na temelju samo 20 uzastopnih očitanja. Nadalje, isti model može pronaći kojim dvjema
klasama signal najvjerojatnije pripada s točnošću od 95%.

Ključne riječi:
Internet stvari, IoT, senzori, strojno učenje, random forest, LSTM, vremenski niz podataka,
prepoznavanje uzorka signala, energetska učinkovitost

vii

Acknowledgments

Prediction is very difficult, especially if it’s about the future!
Niels Bohr

Ako doktoriram, željela bih zahvaliti mentoru Mariu za sav uložen trud i podršku tijekom
zadnjih 10 godina. Bez vaših savjeta te brojnih komentara i iskrižanih verzija, nebi ni bilo
ove teze. Nadam se da ste u našoj suradnji uživali koliko i ja.

Hvala i mom drugom, iako neslužbenom mentoru - šefu Toniju. Hvala na savjetima i
usmjeravanju tijekom ovih 5+ godina. Bez tebe ne bih ni imala prilike upisati doktorat.
Hvala ti što si me učinio menadžerom istraživačem!

Hvala svim bivšim kolegama iz Ericsson Nikola Tesla istraživačkog laba. Zahvaljujem Ivani
na svim brojevima u mom doktoratu, kao i na pravoj količini kofeina i papirnatih maramica.
Bez nje bi ovaj doktorat imao sasvim drugačije rezultate. Hvala Dinku koji je pročitao
ovu tezu više puta, iako je umirao od dosade. Bez tebe bih pisala disetaciju koja se bavi

stojnim ućenjem. Zahvaljujem i Darku što je prepoznao moj potencijal i omogućio mi rad u
istraživačkom odjelu, te upis doktorata.

Na kraju se zahvaljujem mojoj obitelji - hvala Tomislave, Magdalena, Ivane, Željka i Jure.
Ana, iako si srednje dijete, nisam te zaboravila, naprotiv: Hvala mojoj sestri i supatnici koja
me bodrila na cijelom putu. Žao mi je što ti je moja disertacija oštetila laptop. Bez tebe bi
ovdje elaborirani doktorat imao još kompliciranije rečenice.

Hvala što jeste!

P.s. odlično uloženih 5 godina i 8392,06 eura.

Contents

Abstract . iv
Sažetak . vi
Acknowledgments . ix
List of Tables . xiii
List of Figures . xvi

1 Introduction 1
1.1 IoT System Design . 2

1.1.1 Sensors . 3
1.1.2 Gateways . 3
1.1.3 Clouds . 4

1.2 Open Challenges/Research Goals . 5
1.3 Hypothesis . 7
1.4 Dissertation Outline . 8

2 Related Work 11
2.1 Data Reduction in IoT . 11

2.1.1 Sensors . 11
2.1.2 Gateways . 13
2.1.3 Clouds . 15
2.1.4 Energy Efficient Approaches for Data Velocity and Volume Reduction 16

2.2 Data Velocity and Volume Reduction Approaches the Research Will Focus On 17
2.2.1 Dynamic Monitoring Frequency on a Sensor 17
2.2.2 Predicting Final Value from Part of Transient for Sensors with Preheating 20
2.2.3 Signal Type Classification - Time Series Data Classification 22

2.3 Summary . 24

3 Overview of Machine Learning Techniques 25
3.1 Linear and Logistic Regression (LR) . 26

3.1.1 Linear Regression . 27
3.1.2 Logistic Regression . 27
3.1.3 Comparison between Linear and Logistic Regression 28

3.2 Random Forest (RF) . 28

x

3.3 Support Vector Machine (SVM) . 30
3.4 K-Nearest Neighbours (kNN) . 32
3.5 Artificial Neural Networks (ANN) . 35

3.5.1 Multilayer Perceptron (MLP) . 35
3.5.2 Recurrent Neural Networks (RNN) 36

3.6 One Class Classification . 39
3.6.1 One Class Support Vector Machine (OCSVM) 40
3.6.2 Isolation Forest (IF) . 41

3.7 Comparison and Summary . 43

4 Dynamic Monitoring Frequency for Energy-Efficient Data Collection in IoT 45
4.1 Problem Statement and Datasets . 46

4.1.1 Problem Statement . 47
4.1.2 Baseline Algorithm . 47
4.1.3 Solution Space . 49
4.1.4 Datasets . 49

4.2 Statistical and Machine Learning Algorithms 50
4.2.1 Statistical Algorithm (S-DMF) . 51
4.2.2 Machine Learning Algorithm (ML-DMF) 52

4.3 Performance Comparison between Static and Dynamic Monitoring Frequencies 53
4.3.1 Statistical Algorithm (S-DMF) Performance 54
4.3.2 Machine Learning Algorithm (ML-DMF) Performance 56
4.3.3 Comparison of DMF vs SMF Algorithms 59

4.4 Implications on Energy Efficiency and Processing Complexity 61
4.4.1 Energy Efficiency . 63
4.4.2 Optimizing the Size of the Training Dataset 64
4.4.3 Processing Complexity . 67

4.5 Summary . 67

5 Predicting Final Value from Part of Transient for Sensors with Preheating 69
5.1 Gas Sensor Characterization . 70

5.1.1 Environment Setup . 71
5.1.2 Online Period Characteristics . 72
5.1.3 Sleep Period Characteristics . 73
5.1.4 Collection of Transients . 75

5.2 LSTM Model Training and Validation . 76
5.2.1 LSTM Algorithm . 76
5.2.2 Dataset Stratification and Diversification 76
5.2.3 LSTM Parameters Selection . 78
5.2.4 Frequency Selection for Input Data 78

xi

5.2.5 Performance Testing with Scarce Data 80
5.3 Evaluation and Discussion . 82

5.3.1 MQ-5 Sensor Results . 82
5.3.2 MQ-6 Sensor Results . 82
5.3.3 Discussion on Energy Efficiency 84

5.4 Summary . 87

6 Signal Type Classification - Time Series Data Classification 89
6.1 Dataset and Methodology . 90

6.1.1 Dataset . 90
6.1.2 Methodology . 91

6.2 Comparing Classification Algorithms . 93
6.3 Algorithms Robustness . 95

6.3.1 Window Size Analysis . 95
6.3.2 Streaming Data Analysis . 96
6.3.3 Stored Data Analysis . 99

6.4 Discussion . 100
6.5 Summary . 102

7 Dissertation contribution 105

8 Conclusion 107

BIBLIOGRAPHY 109

xii

List of Tables

2.1 Data reduction in IoT - Related work overview 18

4.1 Abbreviations and Notations . 48

4.2 ML hyper-parameters for 2 features and 4 features (*max_ f eatures is used
only for 4 features RF) . 53

4.3 Results of S-DMF algorithm . 56

4.4 Results of ML-DMF algorithms . 60

5.1 Gas concentration classes . 76

5.2 Parameter combinations for building LSTM 77

5.3 Sets of datasets with included/excluded classes 78

5.4 Selecting optimal parameters for LSTM NN 79

5.5 MQ-2 RMSE for different transient sizes 81

5.6 RMSE for different classes (transient size 186) 81

5.7 RMSE for different classes (transient size 20) 82

5.8 MQ-5 RMSE . 83

5.9 MQ-6 RMSE . 83

5.10 Energy consumption . 84

6.1 Dataset overview . 90

xiii

List of Figures

1.1 IoT system design . 2

2.1 Locations in IoT our research is focused on 18

3.1 Illustration of Linear and Logistic regression [1] 26

3.2 Illustration of random forest [2] . 29

3.3 Illustration of Support vector machine [1] 31

3.4 Illustration of an example of the k-nearest neighbor algorithm [3] 32

3.5 Multilayer Perceptron [4] . 35

3.6 A recurrent neuron [4] . 37

3.7 Long short-term memory (LSTM) cell [4] 38

3.8 One class classification vs multi-class classification/detection [5] 39

3.9 One class support vector machine [6] . 40

3.10 Isolation forest [7] . 41

4.1 Problem Description . 47

4.2 Minimum period for maximum delta . 49

4.3 One day data collection with the ideal reading algorithm 50

4.4 Dataset . 51

4.5 Distribution of differences between neighbouring values for target_accuracy=
99%, ∆max = 1°C . 52

4.6 Results of S-DMF algorithm compared to SMF for temperature dataset with
∆max = 0.5°C; Inner image depicts results on logarithmic scale 55

4.7 Results of S-DMF algorithm for temperature dataset 55

4.8 Selecting the best parameters of ML algorithms (∆max = 0.5°C) 57

4.9 Comparison of results of ML algorithms with 2 and 4 features (∆max = 0.5°C) 59

xiv

4.10 Overall results . 62

4.11 Comparison of S-DMF and ML-DMF results with SMF 63

4.12 3 hours S-DMF and ML DMFs with ∆max = 0.5°C; target_accuracy = 99%;
ncc = 5 . 65

4.13 1 day S-DMF and ML DMFs with ∆max = 0.5°C; target_accuracy = 99%;
ncc = 5 . 65

4.14 1 week S-DMF and ML DMFs with ∆max = 0.5°C; target_accuracy = 99%;
ncc = 5 . 65

4.15 1 month S-DMF and ML DMFs with ∆max = 0.5°C; target_accuracy= 99%;
ncc = 5 . 66

4.16 6 months S-DMF and ML DMFs with ∆max = 0.5°C; target_accuracy =
99%; ncc = 5 . 66

4.17 1 year S-DMF and ML DMFs with ∆max = 0.5°C; target_accuracy = 99%;
ncc = 5 . 66

5.1 Three scenarios for sensors setup, namely a) always online, b) with full
preheat and sleep period and c) with prediction based on a partial preheat
and sleep period . 70

5.2 Setup scheme with the test and control sensors, and real-time clock for turning
on and off the test sensor . 71

5.3 Transient for different online (O) – sleep (S) ratios (without gas) 72

5.4 Correlation of transients in case of different Online/Sleep ratios 73

5.5 Transients in different gas levels . 74

5.6 Low vs High gas level transients . 74

5.7 Actual values for 381 transients (top figure) grouped in 8 classes (bottom
figure) . 75

5.8 Comparison of predicted and expected values for MQ-2 gas sensor 80

5.9 Comparison of predicted and expected values for MQ-5 gas sensor 83

5.10 Comparison of predicted and expected values for MQ-6 gas sensor 83

5.11 Energy consumption compared to the sensor that is always online (*Transmission
energy is insignificant compared to others, thus not visible in this figure) . . 85

6.1 Splitting datasets for training, validation and evaluation 91

6.2 Illustration of three approaches . 92

xv

6.3 Models accuracy . 93

6.4 One Class results . 94

6.5 Two class results . 94

6.6 Multi Class results . 94

6.7 Chunk selection . 96

6.8 Models accuracy for various window sizes 97

6.9 IF varying window size . 97

6.10 mc RF varying window size . 97

6.11 Streaming data mode - combined mean accuracy per number of chunks (window
size = 20) . 98

6.12 Accuracy of mc RF streaming data . 98

6.13 Stored data mode - combined mean accuracy per number of chunks (window
size = 20) . 99

6.14 Accuracy of mc RF stored data . 100

xvi

1 Introduction

Ericsson in its whitepapers [8] and [9] introduces cellular Internet of Things (IoT) network.
Cellular IoT enables integration of 5G into the existing and evolving industrial networks used
for real-time automation, thus enabling the Industry 4.0 revolution to meet its promise for
full digitalization. Consequently, IoT concept is growing and its topics are highly researched.
Ericsson forecasts that there will be up to 4.1 billion devices connected by Massive IoT and
other emerging cellular technologies by 2025 [10].

A basic IoT system consists of “the things”, i.e., sensors collecting data, gateways as
midpoint devices connecting sensors to the cloud, and clouds where data is stored, streamed,
analysed and presented. Most of the IoT systems have numerous sensors distributed within
some area. Every sensor has its own battery with limited lifetime and that represents one of
the main bottlenecks of described technology [11,12]. Currently, IoT sensor tasks have to be
carefully planned with large energy savings requirements because they have small batteries
that cannot handle large energy consumption demands. Furthermore, a great number of
sensors collect data in short time intervals, which results in a substantial amount of data.

Since sensors collect data in short time intervals over long time periods, i.e., months
or even years [13], it is expected that IoT devices will generate up to 79.4 ZB of data by
2025 [14]. Finally, all the collected data is sent towards cloud where it must be processed
and stored in large data centers. Furthermore, it is expected that 175 ZB of data will be stored
by 2025 [15]. The increasing amount of stored data requires an increase in the number and
size of data centers, which are connected on electrical grid and consume electrical energy.

However, more data is not always better than less data. Often, collecting redundant data
simply takes storage capacity without providing new information [16] since large amount of
redundant data could be irrelevant and excessive. Collection of such data consequently costs
money and creates unnecessary overheads, thus it should be omitted [17]. In order to identify
redundant data early in the process, pre-processing on the edge of an IoT network, namely
on sensors and gateways is required. Eliminating “garbage” data before it is moved to the
cloud helps to keep data centers less loaded and future data analysis more efficient [18].

As the volume of data generated by various IoT devices increases, storing and processing
it becomes significantly challenging. This is already recognised as the Big data concept,
commonly described with five Vs [19], namely Volume, Velocity, Variety, Veracity and
Value. Volume represents the amount of data, while Velocity is the speed of gathering new

1

Chapter 1: INTRODUCTION

data. Variety stands for different types of data. Veracity is the measure of data uncertainty,
while Value is the information obtained from the collected data.

Today, IoT requirements increase volume and velocity of the data, as well as variety.
Finding the optimal balance between the volume reduction and the information loss (value)
requires the utilization of data variety [20] and thus reducing data velocity at its source [21].
The expected grow in the number of IoT data sources gives rise to network-edge computing;
data pre-processing, filtering [22], compression [23], aggregation and/or correlation [24]
close to the data sources. This includes novel concepts such as edge-mining, which stands
for data processing on battery-powered devices placed at the edges of an IoT network [25].
Such a solution would achieve reduction of data volume at the network edge and thus reduce
energy consumption, bandwidth, as well as storage capacity and processing power at the
cloud backend systems.

However, before performing any of the above mentioned data reduction methods, data
has to be collected. Therefore, battery-powered IoT sensors are still constantly turned on,
i.e., still collecting data and consuming energy. Consequently, moving data reduction closer
to the edges of an IoT network reduces the amount of data circulating through the network.
However, such approach still does not reduce energy consumption of sensors. Therefore,
although the amount of data is decreased, sensors are still constantly turned on and consume
energy.

The main goal of herein elaborated research is to detect places in IoT network where
data velocity and volume reductions can be made, while taking into a consideration
data variety and preserving its value. While doing so, it is important to understand
compromises, either to accept them or to mitigate them.

1.1 IoT System Design

IoT systems consist of three main components; sensors that collect data from the
environment and send it through gateway towards cloud, where data is analysed and used for
decision making. Each component receives the input data, performs internal data processing,
and forwards output data (Figure 1.1).

Figure 1.1. IoT system design

2

Chapter 1: INTRODUCTION

Input and output data can be received/forwarded using either push or pull mechanisms,
or as their combination. The initiator for push mechanism is the southbound component,
e.g., a sensor pushes the data towards a gateway at any moment, which requires the gateway
to asynchronously wait for data transfer. For pull mechanism the initiator is the northbound
component, e.g., a gateway requests data from sensor, which requires the sensor to be always
on and waiting for data transfer.

1.1.1 Sensors

Sensors are endpoint devices that read physical measurements from the environment, e.g.,
temperature or humidity sensors, as well as more complex devices such as LiDAR sensors1

or even cameras. Being endpoint devices, sensors are commonly battery powered and have
low data processing power, while being numerous due to growth of IoT and requirement for
more data. Today, sensors are usually consolidated to collect more than one measurement
type due to drastically reduced production costs, so data collected by single sensor can
contain heterogenous values. Data collected by sensors is referred to as input data, while
output data is data processed by sensors and forwarded further throughout the IoT network.

• input data – a measurement collected by the sensor. For basic analog sensors, such as
temperature sensors, it is commonly a voltage value acquired through a measurement
circuit, which must be translated into a temperature value. For cameras this can be
a raw image acquired through an optical sensor. For physical measurements input is
commonly read with pull mechanism.

• output data – once the data is processed it is transmitted towards northbound
component. Since sensors commonly run on batteries, they usually push data towards
a gateway and then enter a sleep mode, rather than waiting for the pull request all the
time. Data format depends on the input data. However, communication channel used
for data transfer in IoT sensor networks is commonly some type of radio channel due
to remote locations of the sensors, e.g., LoRa2, ZigBee3 or BLE4.

1.1.2 Gateways

Midpoint devices placed between sensors and a data analytics backend in the cloud are
referred to as gateways [26]. A gateway allows sensors to communicate over shorter
distances and abstracts the underlying communication layer such as LoRa [27] on its
southbound, while on its northbound it forwards the data towards the cloud. Furthermore,

1Light Detection and Ranging – a remote sensing method
2Long range, low power wireless platform
3IEEE 802.15.4-based specification for a suite of high-level communication protocols
4Bluetooth Low Energy

3

Chapter 1: INTRODUCTION

before forwarding the data it can perform additional data processing for purpose of
optimization or on-site analytics and decision making. This is commonly feasible as
gateways are implemented with more powerful hardware devices such as Raspberry Pi5,
Arduino6 and STM327 or even a smart phone [28].

Similar to sensors, there can be more than one gateway within an IoT sensor network
as shown in Figure 1.1. Reasons can be multifold, namely redundancy (where multiple
gateways receive data from the same sensors), scalability (when a single gateway cannot
endure the load from all sensors in the area), hierarchy (where gateways are sequentially
connected due to a layered architecture or even distance prolongation), etc. Data sent by
sensors and received by gateways are gateway input data, while gateway output data is data
processed at the gateway which is forwarded towards the cloud.

• input data - represents data coming from sensors. The data is received over a
communication channel that sensors support, such as LoRa or even some proprietary
solution. Consequently, the data format can also be arbitrary, which requires a gateway
to speak the same language as the sensors. While the data is commonly pushed
towards the gateway as previously explained, gateways can still support some type
of push back communications towards the sensors as they are required to manage
the sensor network, e.g., sending a configuration to sensors, load balancing different
communication channels, etc.

• output data – data received from sensors is processed by the gateway and then
forwarded to the cloud for further analysis and decision making. With the rise of
Fog and Edge, more functionalities are pushed towards gateways [11, 19]. Due to
their low computational power and storage capacity compared to the cloud, the data is
still pushed to cloud. This is commonly done over the Internet, while communication
channels can vary from 3G/4G/5G, to WiFi or even cable connection if the gateway is
located in (sub)urban area.

1.1.3 Clouds

Data collected from the sensors and processed by the gateways ends up in the cloud.
Since cloud is backed by huge data centers hosting thousands of servers its computational
and storage capacity makes it feasible for data analytics and archiving. However, due to
its distance from the endpoint sensors, real-time systems may suffer due to high latency.
Nevertheless, with introduction of 5G and high speed Internet backbone, this latency
decreases [29]. Furthermore, utilization of machine learning and prediction algorithms is
able to fill the gap between real-time systems and distant clouds [30]. Finally, distribution

5Credit-card-sized computer that plugs into a TV and a keyboard
6Open-source electronics platform based on easy-to-use hardware and software
7A series of 32-bit microcontroller integrated circuits

4

Chapter 1: INTRODUCTION

of cloud towards Fog and Edge reduces this lag even more [31]. Cloud input data is data
sent from the gateways towards the cloud, while cloud output data is stored, visualized and
analysed data that can be used for decision making.

• input data - while data transmitted from the sensors to the gateways is still arbitrarily
formatted, IoT cloud platforms are beginning to gain a standard interface with the
advent of protocols such as MQTT [32]. It is being used in gateways as well. That
said, input data represents data that is received by the cloud services, commonly in a
push manner, i.e., gateways push the data towards the cloud.

• output data – once received by the cloud services the data is then processed, visualized
and stored. Consequently, data format on the output depends on its purposes, as well
as the use case. Due to high velocity of data, more processing is being performed
using streaming analytics, while storing only relevant data. Finally, even visualization
is done only after preprocessing the data due to its high volume.

1.2 Open Challenges/Research Goals

Sensors usually collect data over an evenly spaced time period defined by the experts in
accordance with the requirements of a specific domain. Selecting such a fixed period is
a challenging task because the expert has to find a compromise between the amount of
collected data and its accuracy. A domain expert has to select a period that is optimal with
respect to both; length to eliminate irrelevant and redundant data and brevity to detect all
significant changes in observed signal. As a result, a fixed period can be too short on one
part of the signal while being too long on the other part of the same signal due to changes in
the signal over time [33].

When an expert is tasked with selecting the optimal period after each data collection
based on the most recent readings, previous readings, and the current state of the system,
data collection with a dynamic period takes place. The selection of such a time period is
even more challenging. After every reading, the next period is selected. This new period
should be selected so that it can simultaneously identify all significant changes and remove
any redundant data. The latter challenge will also be tackled within the research.

Therefore, in order to reduce sensors online time, they can be put to sleep for a longer
period of time and turned on for a very short period just to collect data. The challenge with
described approach are sensors which require preheating before being able to collect data
from the environment and cannot collect data at the exact moment they are turned on.

Inspired by Jia et al. research on gas sensors [34], the focus of second part of herein
elaborated thesis will be on sensors that require preheating. During preheat time, voltages
and currents take time to stabilize so that readings of the actual value can be obtained. A
momentary variation in the current or the voltage during preheating transition is called a

5

Chapter 1: INTRODUCTION

transient. Therefore, if actual value can be predicted from the first part of the transient rather
than having to wait for the sensors to fully preheat, only the first part of the transient needs
to be collected in order to save energy.

Once collected, all the data has to be stored. Data is usually stored in data centers in a
predefined and consistent format, as inconsistent storage may potentially lead to the Digital
Dark Age [35], i.e., data from the digital age can be lost irrevocably [36]. Digital preservation
attempts to mitigate such risks. However, there are a number of challenges in the preservation
and archiving of digital materials, i.e., type of storage, number of copies, data and metadata
models, etc. [37]. There are three main challenges in this area that are recognised by the
experts:

(1) Growth of IoT network requires adding more sensors, either to replace broken ones
or as an addition to an existing solution. Discovering and configuring sensors and associated
data streams usually requires a lot of manual work that needs to be performed by technicians,
thus becoming labour-intensive [38]. Therefore, numerous researchers [38–40] propose
their methods and frameworks that can be used to automate the configuration process by
automatically mapping sensor metadata with data streams.

(2) IoT network with large number of battery powered sensors requires IoT tasks to be
carefully planned due to a limited lifetime of sensor batteries. Therefore, data collection
is commonly optimized [24]. On one hand, in cases with predefined structures, data
optimization can be done by excluding timestamps, information on sensor types and variable
names which are later recovered in the cloud where the configuration metadata is stored. On
the other hand, in cases where the connection towards a configuration metadata is broken
or metadata is corrupted due to unexpected problems, sensors will continue to send data,
however the knowledge of their data type is lost. Such failures may be very expensive as
data being sent by the sensors is meaningless, while the entire system is still up and running
and consuming resources and energy [41].

(3) Even with the above mentioned optimizations, IoT with time still generates zettabytes
of data resulting in Big data. However, traditional data storage systems are not suitable for
Big data storage [42, 43]. Commonly, Big data is stored in Data Lakes that aim to store
metadata separately from raw data [44], thus assisting users and applications to find data
more efficiently [45]. Hence, in a case of unexpected problems between distributed storage
systems, previous knowledge about collected data, including configuration information and
metadata as well as raw data can be lost. Therefore, all data generated by sensors looses their
context and may have to be reconfigured from scratch.

All three mentioned challenges require metadata discovery/recovery and hence, can be
tackled with a single solution i.e., signal type recognition. It defines that a signal from a
specific sensor type in an IoT network could be recognised and its type could be determined
from a small signal chunk to enable quick signal classification.

6

Chapter 1: INTRODUCTION

1.3 Hypothesis

The main motivation behind this research is optimization; of collected data volume,
transmitted data volume, energy consumption and time consumption when collecting data
in an IoT system. Therefore, the main hypothesis (H0) follows from the assumption that
using machine learning techniques it is possible to significantly optimize volume of data
circulating through IoT network, and consequently energy consumption, as well as to
reconstruct time series data lost due to such optimizations, in case of network or storage
malfunctions.

Three additional hypotheses are derived from the main hypothesis:

• (H1) It is possible to predict the change in value of a monitored phenomenon
based on knowledge of historical data, without constant environmental data
collection.
In more detail, the dynamic monitoring frequency algorithm can estimate the future
time moment when an expected change (delta) will happen, without introducing a
significant error. Thus, sensors can only collect data when the change is expected and
sleep in the meanwhile.

• (H2) It is possible to estimate an actual value based on a short part of a transient,
for sensor with a long preheat time.
Long short-term memory (LSTM) neural network can be used to learn and later predict
the actual value from a part of the transient. This way, instead of being constantly
online or fully preheating, the sensor needs to be turned on for only a short period of
time and sleep afterwards. This strategy can result in significant energy savings.

• (H3) It is possible to differentiate between readings from different sensors in real
time, on small chunks of time series data.
Therefore, we hypothesize that random forest algorithm can be used to model time
series data for signal type classification in order to solve 3 problems recognised by the
experts: (1) recognition of a streaming signal type in the case of configuration data loss
due to unexpected communication issues; (2) classification of signal types in the case
of unexpected data storage issues and thus loss of configuration data and/or metadata
and (3) automatic recognition of a signal type when a new sensor is added to an IoT
network.

7

Chapter 1: INTRODUCTION

1.4 Dissertation Outline

The main goal of this research is the investigation of new optimization methods that can
reduce the volume and velocity of data circulating through the IoT network with a large
number of sensors and, consequently, energy consumption. Such improvements frequently
result in trade-offs. These compromises will be taken into account and the ways in which
they can be mitigated will also be examined.

In order to do so, predictive analytics will be used, i.e., the prediction of future events
based on data collected in the past. In more detail, a data-driven predictive approach will
be applied. On the one hand, in a model-driven approach, a theoretical mathematical
model is constructed based on domain expertise or prior knowledge. On the other hand, a
data-driven approach relies on patterns and relationships observed in data [46]. Thus, instead
of starting with a theoretical model, data-driven approaches use statistical and machine
learning techniques to find patterns and relationships in data, and generate predictions
or make decisions. Therefore, a model-driven approach may be more appropriate if the
underlying processes are well understood and there is enough domain expertise to construct
an accurate model. In other cases, a data-driven approach may be more suitable if the
underlying processes are complex or poorly understood, and the available data is rich enough
to support an accurate analysis. In the research, focus will be on machine learning (ML)
algorithms [4, 47–49].

The research is split into 3 parts, where the first one (Chapter 4) covers investigation of an
adaptive, dynamic sampling period, the second one (Chapter 5) covers energy optimization
and deep sleep application of the sensors with pre-heat period, while the third part (Chapter
6) covers signal type classification and, thus, enabling:

1. distinguishing signals from different sources if the configuration is lost

2. correct classification of signals after malfunctions between distributed storage

3. automatic recognition of a newly added sensor.

In the Chapter 4, a novel dynamic monitoring frequency (DMF) algorithm is developed
and tested. DMF algorithm aims at collecting data only when sensor readings change by
more than a predefined value (delta) between consecutive readings. Datasets used in this
research consist of the meteorological data collected every minute during almost 3 years.
DMF algorithms are prepared for multiple deltas on a temperature dataset and are later
verified on humidity and air pressure datasets.

Two data-driven approaches are used for DMF algorithm implementation, namely
statistical and machine learning. On one hand, the statistical algorithm is implemented
to calculate probability of the acceptable change taking place based on the distribution of
historical data. On the other hand, the ML algorithm compares different ML classification

8

Chapter 1: INTRODUCTION

algorithms that predict future period when the acceptable change is expected, based on
previous readings. Finally, the accuracy of DMF algorithm is compared to the results of
two baseline algorithms with static monitoring frequency (SMF) i.e., with a fixed reading
period. The first SMF baseline algorithm should collect the same amount of data as the
DMF algorithm, while the second SMF baseline algorithm should have the same number of
errors as DMF.

Inspired by Jia et al. research [34], in the Chapter 5, we will focus on sensors that require
preheating such as gas sensors, which cannot collect data at the exact moment when they
are turned on. During this preheat time a voltage needs to stabilize, where a set of unstable
values during this period are referred to as a transient. Our research aims to explore a new
approach for obtaining sensor data. This approach involves reading multiple values from the
initial phase of the transient, rather than periodically reading data while continuously being
online or fully preheating after every sleep cycle. To estimate the actual value, we plan to
use a long short-term memory (LSTM) recurrent neural network, which will be trained on
the collected data.

For defining methodology, low-cost MQ-2 [50] gas sensors are utilized. Since the goal
is to predict the actual value from the transient and turn the sensor off, two sensors are used,
namely, a test sensor with a predefined sleep period for predicting the actual values and
a control sensor for the ground truth, without a sleep period. Finally, to reduce external
influences, the entire setup is placed in an isolated environment, i.e., a sealed isolated
container. Prior to building the prediction model, a preliminary analysis is performed to
characterize the behaviour of the transient. Transients for the different online–sleep ratios
are compared, as well as different gas concentrations. Finally, the approach is tested on
the MQ-5 [51] and MQ-6 [52] gas sensors to verify its applicability on different low-cost
sensors.

Chapter 6 is focused on signal type classification that enables reconstruction of time
series data type in case of unexpected network or storage issues, as well as automatic sensor
configuration. Therefore, the goal is to compare and evaluate applicability of different
approaches and corresponding ML models for time series signal type recognition from
IoT sensors using signal pattern classification. The dataset used in this research contains
11 different signal types from 2 separate data sources - meteorological data and computer
resource utilization data.

Furthermore, in order to select the best model, three approaches are considered and
analysed – one class [53], two class and multi class classification [54]. One class and two
class approaches require n models, one for each of the n signal classes, while multi class
classification should have the knowledge of all n classes and thus results with a single ML
model which outputs n predicted probabilities. Moreover, streaming data and stored data
modes are considered. First, a streaming mode which defines continuously arriving data in
real time will be evaluated on consecutive windows. Second, stored data mode will be used

9

Chapter 1: INTRODUCTION

when data is already collected and stored, however metadata is lost, and stored data types are
unknown. Therefore, windows can be selected randomly from the entire set of stored data.

10

2 Related Work

This chapter systematically covers existing solutions for all three researched areas defined
in a previous chapter. The first part overviews existing data reduction techniques that can be
applied across all parts of the IoT network. In the second part, the focus is on the specific
techniques that this research will investigate. This includes approaches that eliminate data
before it is collected (such as the dynamic monitoring frequency approach), the use of LSTM
neural networks with a focus on gas sensor applications, and an overview of the existing
techniques for time series data classification.

2.1 Data Reduction in IoT

As shown in Figure 1.1, there are three main components of IoT systems; sensors that
collect data from the environment and send it through gateway towards cloud, where data
is processed, analysed and stored. Data reductions can be made on each component, either
when collecting the input data or when performing internal data processing and outputting
the reduced data. Therefore, researchers are trying to reduce the amount of collected data and
energy consumption in all parts of an IoT network, either in an infrastructure or in monitored
data [24].

2.1.1 Sensors

While collecting data from the environment, sensors are dealing with a large amount of data
in short time intervals. Consequently, sensors consume a lot of battery power to collect data,
even though many of the collected values are similar. Sensors should implement algorithm
that dynamically adapts reading interval based on previously collected values as well as filter
collected data, classify them and self-control data transmission according to their trends.

Input data

In [55] Mastelic et al. introduce a dynamic monitoring frequency algorithm for collecting
monitoring data from ultrascale systems. The algorithm deterministically reduces data
velocity by dynamically self-adapting the monitoring frequency to the volatility of collected
data. It also reduces data volume because it reads data less often but still keeps the same

11

Chapter 2: Related Work

data value as the equivalent static monitoring frequency. The algorithm requires human
(administrator) input of maximum and minimum periods as well as factor for calculating
window size.

Trihinas et al. [56] introduce AdaM, a lightweight adaptive monitoring framework for
battery-powered IoT devices with limitations in processing capabilities. Framework consists
of two algorithms, one for adaptive sampling and other for adaptive filtering. In this part
of the system, adaptive sampling, where algorithm dynamically adapts monitoring intensity
based on the current evolution and variability of the metric stream with minor processor
usage, is used. Results show that it reduces volume and energy consumption while preserving
relatively high accuracy.

Jia et al. in [34] propose a new, low-power, automatic, accurate, and wireless ammonia
monitoring approach that uses metal oxide sensors. This approach does not wait for
equilibrium as this consumes significant amount of energy, rather it tries to predict the
resistance at equilibrium using the sensor’s transient measurements in the short heating
window using LSTM neural networks. Proposed model accurately predicts the equilibrium
state resistance value with an average error rate of 0.12%.

Arendt et al. [57] present a model-predictive communication framework based on
historical data analysis. Data collected in three previous days is used to predict fourth day
values. Two algorithms, autoregression based ARIMA and a neural network with LSTM
cells, are compared, in order to reduce communication effort. Results show a significant
potential to reduce communication effort per day of at least 60% up to 95%, depending on
the required accuracy, significantly contributing to the achievement of mMTC performance
targets. The main bottleneck of this solution is its usage of historical data. The framework is
used to predict one day after data is constantly collected for 3 days, thus it can either predict
every 4th day, or use predicted values of 4th day to predict values of the 5th day. Latter
option will increase error with time since only predicted data is used.

In [58], Cecchinel et al. have investigated whether there is significant battery lifetime
gain when using adaptive sampling and sending periods. Self-adaptive approach using
machine learning and deep-sleep is used to provide an optimal configuration extending
the battery lifetime of a sensor platform. Prediction model based on historical data is
implemented on a middle layer, and it is used for the generation of the optimal configuration.
Gain in the battery lifetime is compared to solution that uses fixed periods (with and without
deep-sleep). It is shown that adaptive periods successfully lower the battery discharge.
In experimental validation, authors have successfully scaled up the battery lifetime of a
temperature sensor from a monthly to a yearly basis, while ensuring a proper level of data
quality and freshness.

12

Chapter 2: Related Work

Output data

The second part AdaM algorithm [56], adaptive filtering, is useful for preparing sensor
output. After sampling algorithm selects data to read, filtering algorithm analyses the dataset
and decides, for every input, is it relevant and should it be passed to the next stage.

In [59] Zordan et al. present a lossy compression scenario which uses machine learning
techniques for signal classification to improve energy efficiency while tolerating some
distortion. The algorithm first collects time series data and extracts features. Next step
is feature normalization and selection of relevant ones. Last step is signal classification.
Experiments show that small number of features (< 20) achieve classification performance
over 97%.

In [60] Baharudin et al. propose low-energy algorithm for sensor data transmission
from sensor nodes where the sensors can self-control data transmission according to the
trends of data. It uses Adaptive Duty Cycle for data transmission adjustment frequency and
Compressive Sensing (CS) for data compression. Simulation results show that collective
transmission with CS-based data compression significantly reduces transmission energy.

In [58], Cecchinel et al. have investigated whether there is significant battery lifetime
gain when using adaptive sampling and sending periods. While adaptive sampling is
optimization in input sensor data, adaptive sending periods optimize output of a sensor. As
already written in previous section, experimental validation shows that this combination of
adaptive parameters extends battery lifetime of a temperature sensor from a monthly to a
yearly basis, while ensuring a proper level of data quality and freshness.

2.1.2 Gateways

After data is collected and processed on sensors, it is forwarded to the gateways. There are
two approaches how data from sensors arrives at the gateway. In the first approach sensor
decide when to push data to gateway, while in the other gateway send pull request to one of
sensors in the group, or to all of them, depending on their position, battery level or Internet
connection. When data is received, gateway should filter, compress and correlate data in
order to forward only relevant values towards the cloud.

Input data

Mushunuri et al. in [11] incorporate optimization libraries within the Robot Operating
System deployed on a robotic sensor – actuators. To overcome the limitations of IoT devices
in terms of computation power, Fog computing is used. One robot acts as a master node with
others as client nodes. Whenever there is data available for computation, the client robot
shares its computation load in order to extend its battery lifetime. The Edge client robot
having data for computation sends its entire data to Fog server robot that divides computation

13

Chapter 2: Related Work

among peer robots depending on their communication path loss and power availability.
Samie et al. in [12] propose a technique for managing computation offloading in a local

IoT network under bandwidth constraints. The gateway gives each device its minimum
bandwidth demand. Then it calculates the battery life of each device under this configuration
and remaining bandwidth. The remaining bandwidth must be allocated to the devices, while
prioritizing the devices with lower battery life. Results show more than 40% improvement
in utilization of gateway’s bandwidth as well as up to 1.5 hour improvement in battery life.

Liyanage et al. [61] proposes a proactive IoT gateway service scheduling scheme in the
opportunistic Internet sharing environment. The scheme is to be used as a background
service of a device to continuously retrieve the information of available gateways and to
schedule the connection among the available gateways. The scheduling scheme reduces
the re-connection between the collaborative devices and minimises the unnecessary energy
consumption derived from re-connection processes.

In [62] Natarajan et al. propose an end-to-end system prototype for power-efficiently
compression of continuous bio-signals in sensor network. The gateway dynamically tunes
compression parameters to adapt to signal changes during continuous monitoring and
transmits them to the sensor. Gateway dynamically adapts and tunes compression parameters
based on current sparsity levels. Real-time parameter tuning is achieved by periodical
transmission of raw measurements from the node to the gateway. This results with 100X
faster solution with energy consumption less than 3% of standard encoder.

In [63] Wang et al. propose sleep scheduling and wake up protocol. In this solution
gateway calculates sleep interval for sensor in order to save their battery and achieve energy
efficiency.

Khandel et al. in [64] aim to reduce the communication overhead and propose a method
that is able to determine which sensors should send their data to the central node and which
one should drop data. Some sensors have high data correlation or they may have data
that are not essential at the central node for current operation. The authors have designed
a controller that selects a subset of sensors to send data to the cloud, while keeping the
accuracy at an acceptable level. Considering the dynamics of the data collected at the
sensors, Advantage Actor-Critic based reinforcement learning (RL) scheme is implemented
to train the controller. The authors have also demonstrated how the parameters of the RL
reward function can be tuned to make an appropriate tradeoff between the accuracy and
communication overhead.

Output data

In [21] NECtar agent, a solution for IoT network-edge data reduction is presented by
Papageorgiou et al. This solution presents three main elements; streamification, one-click
data handler instantiation and IoT-specific analysis. Streamification includes new data
reduction algorithms that work upon data streams and take decisions per incoming data

14

Chapter 2: Related Work

item. One-click data handler instantiation enables network-edge devices to select one of
many possible algorithms and instantiate a handler that enforces the respective data reduction
logic. Finally, IoT-specific analysis stands for one of the first network-edge data reduction
algorithms evaluated specifically for IoT devices and datasets. NECtar achieves accuracies
76.1% to 93.8% while forwarding 1/3 of data items, without adding significant forwarding
delays.

Razafimandimby et al. [65] present Bayesian Inference Approach. Sensors are collecting
multiple values, including temperature and humidity, every 30 seconds. Gateways compute
the probability of making an inference error in the cloud given the temperature and the
humidity, before sending their data. If there is a strong chance that the error magnitude
exceeds a predefined threshold, the gateway sends both humidity and temperature, else the
gateway sends only the temperature data, and the humidity value will be inferred in the cloud.
Evaluation results show that this approach drastically reduces the number of transmitted
data and the energy consumption, while maintaining an acceptable level of data prediction
accuracy.

2.1.3 Clouds

After the data collected by sensors reaches the cloud, it should be stored somewhere. Storing
all of the collected data results in the large amount of similar data with great need for storage
capacity. Accordingly, data should be filtered, compressed and normalized in a smart way,
so only really relevant data is stored.

Input data

In [66] Soultanopoulos et al. describe the data collection from Bluetooth Low Energy devices
to identify and track data in real time and allow processing in the cloud to improve analysis.
One of the main characteristics of this solution is smart mode of data transmission including
the time interval, on demand-violation and rules. A gateway enables the processing of sensor
data before they are transferred to the cloud. The experimental results demonstrate that the
system supports real-time communication and fast data collection with data transmission in
less than 130 ms.

In [67] Ge et al. propose energy efficient solutions such as putting idle servers in data
center (DC) to sleep as well as shutting down idle DCs during off-peak hours.

Output data

Meng and Liu [68] introduce the concept of monitoring-as-a-service (MaaS), its main
components and requirements. There are three enhanced MaaS capabilities: window-based
violation detection which can save 50% to 90% communication cost because of its parameter

15

Chapter 2: Related Work

tuning ability; violation-likelihood based state monitoring which can adjust monitoring
intensity based on the probability to detect important events which results with significant
gain in monitoring service consolidation; and multitenant state monitoring techniques.
Monitoring topology planning technique minimises monitoring data delivery overhead that
leads to improvements in the scalability of the service.

Moon et al. in [20] compare lossy compression algorithms Discrete Cosine Transform
(DCT), Fast Walsh-Hadamard Transform (FWHT), Discrete Wavelet Transform (DWT),
and Lossy Delta Encoding (LDE) on weather sensor data. Results indicate that DCT and
FWHT generate higher compression ratios than others. Regarding information loss, LDE
outperforms others. Compression error is much severe in DCT and FWHT while LDE is
able to maintain lower error rate than others.

In [69] Eliseev et al. give an overview of modern methods, models and technologies
to process Big data in large-scale system such as Map-Reduce. It also shows that Big data
processing takes significantly less time on a cluster, compared to a single computer.

In [70] Kosović et al. estimate value of daily solar radiation using machine learning
(ML) algorithms. Input to ML algorithm are other collected parameters that are correlated
to solar radiation. Using such approach, the amount of data that is being sent through whole
IoT network is reduced. Cost is additionally lowered since one expensive sensor is removed
from IoT network.

2.1.4 Energy Efficient Approaches for Data Velocity and Volume
Reduction

In order to build an energy efficient IoT system that is able to tackle with Big data challenges
it is important to have a systematic approach and understand where reduction in data volume
and velocity can be made and what are the trade-offs. This section provides categorization
of the approaches previously described with their applications on specific components of
an IoT system as well as their trade-offs. This includes dynamic monitoring frequency,
data filtering, compression, consolidation, aggregation, correlation, and finally on-site data
analytics.

While dynamic monitoring frequency enable sensors to collect data from the environment
on event, by dynamically changing the monitoring frequency to detect and store only
changes, sensors may filter data and transmit only relevant data, while ignoring the rest.
On one hand, they save on transmission as less data is transmitted. On the other hand,
sensors still have to collect data and consume energy while doing so. Furthermore, data
consolidation enables sensors to agree on transferring bulk of data instead of transmitting
each value separately, e.g., collect data for 5 minutes and then bulk transfer all data at
once. Similarly, a single sensor that collects different types of values, e.g. temperature and
humidity, can bulk transfer these two values. Problem is that both sensor types must be read

16

Chapter 2: Related Work

at the same interval, which excludes dynamic frequency approach. Data aggregation is a type
of data and information mining process where data is searched, gathered and presented in a
report-based, summarized form, e.g., storing average values or a trend instead of raw data.
Using this approach, sensor can aggregate data in some predefined interval and send only
aggregated values. It may also compare collected value with aggregated one and send both
values if they vary significantly. Moreover, data correlation refers to a process of combining
the data in some manner, either by correlating it with some other data and thus applying
the soft(ware) sensor concept, namely correlating different sensor values to obtain additional
one instead of measuring it with a hardware sensor, or by correlating the same type of sensor
data between different sources. Lossless data compression on sensors can be achieved in
several ways, one of which is to send only changes of values (deltas), instead of full values.
If sensors are collecting data in predefined period, they could exclude timestamp and it
can be calculated later from a known period. Furthermore, if sensors send a predefined
structure, they can exclude variable names. Instead, gateways could be implemented to read
the predefined structure. Finally, on-site data analytics performed on a gateway represents
Edge – a concept for collecting and analysing data on the spot. In such scenarios, data is only
forwarded to the cloud for storing or post-analysis, while all the decision making is moved
closer to the Edge, namely gateways and sensors. Moreover, on-site data analytics applied
in the cloud would refer to the streaming analytics, i.e., the ability to constantly, in real time,
measure and analyse data while moving within the large data streams. Afterwards, data can
be stored (in compressed, aggregated, consolidated form, or as raw data) for archive.

2.2 Data Velocity and Volume Reduction Approaches the
Research Will Focus On

In the previous section, it is shown that researchers commonly focus on reductions of already
collected data. However, in our research, the goal is to reduce the amount of collected data
and sensor online time as well as to mitigate possible risks introduced by those reductions
(Table 2.1). Therefore, our research will focus on improvements in three areas (Figure 2.1):
(1) data collection with dynamic monitoring frequency; (2) estimation of the final value from
the first part of the transient for sensors with preheating; and (3) signal type classification,
which identifies the type of sensor signal being sent.

2.2.1 Dynamic Monitoring Frequency on a Sensor

This chapter gives an overview of methods which enable data volume reduction before even
collecting the data. Such methods are not widely researched, however, some researchers did
tackle this challenge.

17

Chapter 2: Related Work

Figure 2.1. Locations in IoT our research is focused on

Sensor input [55–58]*, [34, 71]*

Sensor output [56, 58–60], [72]*

Gateway input [11, 12, 61–64]

Gateway output [21, 65]

Cloud input [66, 67]

Cloud output [20, 68–70], [73]*, [74]*, [75–83]*

*Data collection with dynamic monitoring frequency
*Estimating the final value from the first part of the transient
*Signal type classification

Table 2.1. Data reduction in IoT - Related work overview

In [55] Mastelić et al. introduce a dynamic monitoring frequency algorithm for collecting
monitoring data from ultrascale systems. The algorithm deterministically reduces data
velocity by dynamically self-adapting the monitoring frequency to the volatility of the
collected data. It also reduces data volume because it collects data less often, however it
still keeps the same data value as the equivalent static monitoring frequency. This algorithm
solves the same problem, but it requires human (administrator) input of maximum and
minimum periods, as well as the factor for calculating window size.

Trihinas et al. [56] introduce AdaM, a lightweight adaptive monitoring framework for
battery-powered IoT devices with limitations in processing capabilities. The framework
consists of two algorithms, namely one for adaptive sampling (i.e. dynamic monitoring
frequency) and the other for adaptive filtering. Adaptive sampling algorithm dynamically
adapts monitoring frequency based on the current evolution and variability of the metric
stream with minor processor usage. Results show that it reduces volume and energy
consumption while preserving relatively high accuracy. The second part of the AdaM
algorithm, namely adaptive filtering, is useful for preparing sensor output. After sampling
algorithm selects data to read, filtering algorithm analyses the dataset and decides for every
input is it relevant and whether it should be passed to the next stage. AdaM framework
can reduce data volume and energy consumption by approximately 70%, while preserving

18

Chapter 2: Related Work

the accuracy greater than 89%. AdaM calculates standard deviation of distances for a time
window, while in comparison, our solution learns offline from the past data, and does not
consume additional energy on computation when applied online.

In [73] Lujić et al. present a three layer (gathering, edge and cloud) architecture model
for data storage management on the Edge. This includes an adaptive algorithm that is
dynamically finding a trade-off between data accuracy and data volume, while focusing on
time series data. By using the proposed approach it is possible to reduce the amount of stored
data by an average 73.02% and 80.27% in each cycle for the two datasets respectively, while
satisfying demands for forecast accuracy and thereby showing potential for saving limited
storage space.

Arendt et al. [57] present a model-predictive communication framework based on
historical data analysis. Data collected in three previous days is used to predict fourth day
values. Two algorithms, autoregression based ARIMA and a neural network with LSTM
cells, are compared, in order to reduce communication effort. Results show a significant
potential to reduce communication effort per day of at least 60% up to 95%, depending on
the required accuracy, significantly contributing to the achievement of mMTC performance
targets. The main bottleneck of this solution is its usage of historical data. The framework is
used to predict one day after data is constantly collected for 3 days, thus it can either predict
every 4th day, or use predicted values of 4th day to predict values of the 5th day. Latter
option will increase error with time since only predicted data is used.

In [58], Cecchinel et al. investigates whether there is a significant battery lifetime gain
when using adaptive sampling and sending periods (i.e. dynamic monitoring frequency).
A self-adaptive approach using machine learning and deep-sleep is used to provide the
optimal configuration extending the battery lifetime of a sensor platform. Gain in the
battery lifetime is compared to a solution that uses fixed periods. It is shown that dynamic
monitoring frequency successfully lowers the battery discharge. While adaptive sampling
is optimization in input sensor data, adaptive sending periods optimize output of a sensor.
Experimental validation shows that this combination of adaptive parameters extends battery
lifetime of a temperature sensor from a monthly to a yearly basis, while ensuring a proper
level of data quality and freshness.

Therefore, a sensor should only collect data using the lightweight algorithm when a
defined delta is anticipated, sleeping otherwise. As a result, the monitoring interval increases
and decreases depending on whether the current delta is greater or lower than a significant
delta. In this manner, if data is changing slowly, the sensor may be in sleep mode for hours
instead of minutes, rather than consuming energy for data collection and analysis only after
data has been collected.

19

Chapter 2: Related Work

2.2.2 Predicting Final Value from Part of Transient for Sensors with
Preheating

This section gives an overview of LSTM neural networks and their applications to time series
data prediction.

Jia et al. in [34] propose a new, low-power, automatic, accurate, and wireless ammonia
monitoring approach that uses metal oxide sensors. This approach does not wait for
equilibrium as this consumes significant amount of energy, rather it tries to predict the
resistance at equilibrium using the sensor’s transient measurements in the short heating
window (as short as 200ms) to predict the actual value. Prediction model is built on LSTM
neural networks. Proposed model accurately predicts the equilibrium state resistance value
with an average error rate of 0.12%. The final average estimation error for the ammonia
concentration level is 9.38ppm.

Salhi et al. in [74] propose implementation of a preventive system for gas leakage
and fire incidences in smart home environment to enhance safety using low-cost and
low-energy consumption devices through M2M standard communication protocols. They
applied supervised machine learning on several algorithms, predict the level of risks for fire
and gas leakage and alert responsible person.

In [71] Osorio-Arrieta et al. present a new method to reduce the measurement time by
the prediction of the steady-state using the transient response to ethanol for quartz crystal
microbalance gas sensors coated with ethyl cellulose. The successive curve-fitting algorithm
was implemented using the Gauss–Newton method to observe the evolution and behaviour of
data obtained from several experimental measurements. The parameters of the model were
determined, and the time constants and the magnitude of the steady-state response were
analysed. Therefore, the steady-state response could be predicted with a 55% reduction in
the measurement (detection) time, which can be of vital importance in many cases, especially
for poisonous or inert gases.

Zhang et al. in [72] propose a systematic scheme including data collection and prediction
in order to minimise both the required time and amount of measurement data for training,
while achieving high prediction accuracy to achieve fast measurement with chemical sensors.
For data collection, the proposed sliding window sampling approach with data augmentation
is able to generate more sequence sets for training from limited amount of measurement data.
Using such method, any small segment on the early transient response curve can be used for
data sampling and test, enabling ease of implementation for practical applications. Further,
a model combining long short-term memory (LSTM) neural network and polynomial fitting
is designed for mixed feature extraction with less required data, which are then input to
multilayer perceptron for prediction. The developed scheme is applied to real measurement
data showing significant improvement of prediction accuracy compared to previous methods.

In order to estimate the final value from part of the transient, the LSTM neural network

20

Chapter 2: Related Work

will be used, as it is a recurrent neural network that provides the best results for time series
data. Researchers use LSTM for different time series problems. Chen et al. in [84] use
LSTM network as a method to predict the mechanical state. The simulation results of LSTM
network are compared with the results obtained with support vector regression machine
(SVRM). It is found that using the same window width the MSE network test results of
LSTM are smaller than the results of SVRM, making the LSTM model better than the SVRM
model in the field of mechanical state monitoring and prediction. In [85] Wang et al. predict
water quality using LSTM neural network. LSTM is compared with back propagation neural
network (BP NN) and online sequential extreme learning machine (OS-ELM). Results on
several simulations show that, compared with BP NN and OS-ELM, the predictive accuracy
of LSTM NN is higher and more generalized. Yu et al. in [86] use LSTM neural network
for spectrum prediction. LSTM network is compared to Back Propagation (BP) network
results and results show that LSTM has better performance than BP in case of same number
of hidden layers and neurons. Liu et al. in [87] use LSTM neural networks to analyse and
predict stock transaction data. Results show accuracy of about 72% for the short period of
data. Furthermore, Yao et al. in [88] propose LSTM network combined with fuzzy-rough
set (FRS) theory for short-term wind speed prediction. The experimental results show that
the FRS-LSTM model has about 40% higher prediction accuracy than the traditional BP
neural network. In [89] Kim et al. propose short-term electricity consumption prediction
method. LSTM network is used to predict month-ahead electricity consumption. Results on
the real data show that the proposed method performs well with accuracy above 80%. They
also state that the test accuracy can be improved with a longer period of training time and
deliberate hyperparameter setting. Qian and Chen in [90] conduct a stationary analysis of the
stock’s time series data and then use the LSTM network to predict stock data under different
stationary conditions. Results are compared with ARIMA algorithm results. As shown on
large number of experimental results, the error rate of the LSTM algorithm is 66.78% lower
than that of ARIMA. They also point that the main disadvantage of LSTM algorithm is that
it takes a lot of time to train the model and requires large sample of data.

Finally, in this work, energy consumption of the gas sensor is considered, as well
as the consumption for data transmission. While the focus is given on the gas sensor
due to its higher consumption, there is also a large body of work focusing on energy
consumption optimization in Wireless Sensor Networks [91, 92] as forerunner of IoT. There
is also a number of researches focusing on energy consumption optimization in IoT systems
addressing other power-hungry components such as radio [93,94]. These approaches can be
further used for decreasing the overall power consumption of such IoT systems.

21

Chapter 2: Related Work

2.2.3 Signal Type Classification - Time Series Data Classification

Time series classification is an important task in time series data mining. Researches have
worked in this field during last decades and with the increase of time series data availability,
hundreds of time series classification algorithms have been proposed. However, it remains
a challenging problem due to high dimensionality, large data size and continuous update of
time series data [75].

In [76] Geurts proposes tools to allow machine learning classifiers to cope with time
series data. Patterns are extracted from models and combined in decision trees to give
interpretable classification rules. Experiments show that 1-NN has the best results on all
problems. One conclusion is that very good results can be obtained with simple feature sets;
however by sacrificing interpretability. This observation justifies the fact that the application
of machine learning on temporal data has focused on interpretability rather than on accuracy.
In terms of accuracy, better results can be obtained by using either boosting, 1-NN with naive
features or, in case where start time of characteristic events are highly variable, by pattern
extraction.

In [77] Papadimitriou et al. introduce SPIRIT (Streaming Pattern dIscoveRy in
multIple Time series) comprehensive approach to discover correlations that summarise large
collections of streams. Given n numerical data streams, all of which values are observed
at each time tick t, SPIRIT can incrementally find correlations and hidden variables, which
summarise the key trends in the entire stream collection. The discovered trends can also
be used to spot potential anomalies, to do efficient forecasting and to simplify further
data processing. Experimental evaluation shows that SPIRIT can incrementally capture
correlations and discover trends. Moreover, SPIRIT-based forecasting is several times faster
than other methods.

In [78], Wang et al. propose a baseline for time series classification from scratch with
deep neural networks. Proposed baseline models are pure end-to-end models without any
heavy preprocessing on raw data or feature crafting. The proposed fully convolutional
network achieves premium performance compared to other state-of-the-art approaches. A
simple multilayer perceptrons are found to be identical to the 1NN-DTW as the previous
golden baseline.

In [79], Ismail et al. present a large empirical study of deep neural networks (DNNs)
for time series classification. They give an overview of the most successful deep learning
applications in various time series domains and with practical examples explain how deep
learning can be adapted to one dimensional time series data. In their study, authors
train 8,730 deep learning models across 97 time series datasets. The results show that
end-to-end deep learning can achieve the current state-of-the-art performance for time
series classification with architectures such as fully convolutional neural networks and deep
residual networks.

22

Chapter 2: Related Work

In [80], Jastrzebska proposes a new approach for time series classification that transforms
the scalar time series into a two-dimensional space of amplitude and a change of amplitude.
Subsequently, this representation is used to plot the data producing one figure for each time
series thus converting time series classification problem to the visual pattern recognition
problem. This transformation allows applying a wide range of algorithms for pattern
recognition and opens the possibility to apply clustering algorithms. Results on real-world
datasets achieve a satisfying classification accuracy. Furthermore, the lengths of time series
do not have to be the same, thus approach is well-suited for large-scale datasets with long
time series.

In [81], Lamrini et al. investigate an unsupervised machine learning method based
on one class support vector machine for anomaly detection in network traffic. In the
absence of any prior expert knowledge on anomalous data, they propose the use of a
similarity measure for multivariate time series to evaluate the output results and select the
best model. The data samples that are provided to the OC-SVM classification algorithm
are multivariate, each composed of four KPI segments over the same time-window. Each
segment is characterized by seven statistical attributes, namely minimum, maximum, mean,
median, standard deviation, number of average crossings and squared mean error, computed
between the raw data and the linear fitting. OC-SVM method is applied to detect anomalies
in real network traffic, contributing with an automatic method based on the similarity index
for setting the hyper-parameters, which defines the learning configuration and provides
satisfactory results.

In [82], Zhao et al. propose novel convolutional neural network framework for time
series classification. Instead of using human designed features, CNN can automatically
discover deep features. Experiments are conducted on both simulated datasets and real-world
datasets from different application domains. Experimental results show that the CNN
method outperforms the state-of-the-art methods in terms of classification accuracy and noise
tolerance. Nevertheless, limitations include time consuming training of CNN as most of its
parameters are determined by lots of experiments and fixed length of time series which is
determined by the architecture of CNN.

In [83], Shahid et al. propose a new network discovery technique in order to find which
IoT devices are connected to the network. Four IoT devices (sensor, camera, bulb, plug) are
recognised by analysing streams of sent and received packets, using machine learning. Six
different ML classifiers are used and the results are promising, with an overall accuracy as
high as 99.9% achieved by random forest on a test set.

Most of the above mentioned researches focus on multi class classification approach.
However, in [81] Lamrini et al. use one class classification, but they classify only one
signal and try to detect anomalies. However, the goal of our approach is to compare
three approaches for signal type recognition, namely one class classification (1c), two class
classification (2c) and multi class classification (mc). Furthermore, our research is focused

23

Chapter 2: Related Work

on both, recognition of streaming signal (as in [77]) as well as recognition of signal which is
already collected and stored (as in [76], [78], [79], [80], [83] and [82]).

The main contribution of our analysis is that it covers multiple approaches, namely, one
class, two class and multi class, which can be used for different scopes of problems. On
one hand, multi class approach is the most simple, but most accurate one since it has the
knowledge of all classes and their amount. On the other hand, one class approach recognises
signal type without knowledge of any other class. All proposed approaches can be used not
only to recognise one specific signal, but also to eliminate the least probable signal classes.

2.3 Summary

A number of researchers are dealing with data reductions in IoT. In the first part of the
chapter, a general overview of existing solutions for data reductions on sensors, gateways
and cloud was presented. This includes dynamic monitoring frequency, data filtering,
compression, consolidation, aggregation, correlation, and finally on-site data analytics. The
focus of the second part is on the specific techniques that this research is investigating. The
goal of the presented research is to reduce the amount of collected data by eliminating data
before it is even collected and therefore reduce sensor online time, through methods like the
dynamic monitoring frequency approach or estimating the final value from the transient of
sensors with preheat time. Furthermore, eliminating data before even collecting it, comes
with trade-offs. In order to mitigate possible risks introduced by such reductions, signal type
classification approach which identifies the type of sensor signal being collected and stored
is investigated, and an overview of the existing techniques for time series data classification
is presented.

24

3 Overview of Machine Learning Techniques

"Machine learning is the science (and art) of programming computers so they can learn from
data" [4]. In 1997 Tom Mitchel described machine learning (ML) as: "A computer program
is said to learn from experience E with respect to some task T and some performance
measure P, if its performance on T , as measured by P, improves with experience E.“ Geron
in [4] explains spam filter as an example of Mitchel’s definition. Spam filter can learn to
flag spam given examples of spam emails (e.g. flagged by users) and examples of regular
(non-spam) emails. The examples that the system uses to learn are called the training set.
Each training example is called a training sample. In this scenario, the task T is to flag spam
for new emails, the experience E is the training data, and the performance measure P needs
to be defined. For example, this can be the ratio of correctly classified emails; this measure
is called accuracy and it is often used in classification tasks.

Machine learning is commonly divided by the way algorithm is trained – with or without
human help:

• Supervised learning – requires human to label data.

• Unsupervised learning – works with unlabeled data; system itself tries to learn data
characteristics.

• Semisupervised learning – as it name says, semisupervised learning is the combination
of previous two categories. Algorithms are usually trained in unsupervised manner,
while fine tuning is done in supervised manner.

• Reinforcement learning – consists of the learning system, called an agent that observes
the environment. Agent selects and performs actions, and gets positive or negative
„rewards“ in return. This way, it tries to learn the best strategy in order to get the
largest reward.

Furthermore, there are two different types of problems in machine learning, both of
which involve predicting a target variable based on input data, namely regression and
classification. The main difference between these two is in the type of target variable being
predicted. On the one hand, regression involves predicting a continuous target variable,
such as a numerical value like temperature, stock price, or length of an object. Regression
algorithms aim to find a relationship between the input variables and the output variable,

25

Chapter 3: Overview of Machine Learning Techniques

which is represented by a function that maps the inputs to a continuous output. On the
other hand, classification involves predicting a categorical target variable, such as a binary
value (yes/no) or a multi-class label (e.g. type of vehicle). Classification algorithms aim
to classify input data into the one of several predefined classes based on the patterns from
the input variables. In summary, the key difference between regression and classification is
that regression involves predicting a continuous target variable, while classification involves
predicting a categorical target variable [4, 47].

Through our research we utilize data-driven predictive approach, using supervised
learning [95]. In the following sections, supervised machine learning algorithms used in
this dissertation will be explained and compared.

3.1 Linear and Logistic Regression (LR)

Linear and logistic regression (LR) are developed by many researchers over time. Linear
regression was first introduced by English statistician Sir Francis Galton in the late 19th
century [96]. Furthermore, logistic regression was independently developed by the several
statisticians and mathematicians in the early 20th century, while the logistic regression as
a general statistical model was originally developed and popularized primarily by Joseph
Berkson in the 1940s [97].

Both linear and logistic regression are statistical methods used for modeling the
relationship between a dependent variable and one or more independent variables (Figure
3.1). However, they differ in their approach and the type of data they are suited to model
[4,47]; linear regression is used for regression problems, while logistic regression is used for
classification problems.

Figure 3.1. Illustration of Linear and Logistic regression [1]

26

Chapter 3: Overview of Machine Learning Techniques

3.1.1 Linear Regression

Linear regression is used when the dependent variable is continuous and the relationship
between the dependent variable and the independent variables is linear. The goal of linear
regression is to find the best-fitting line (or hyperplane in higher dimensions) through the
data points that minimises the sum of the squared differences between the predicted and
actual values. Furthermore, linear regression can also be used to solve simple and multiple
regression problems, with simple regression involving only one independent variable and
multiple regression involving multiple independent variables [96].

Linear regression tries to model the relationship between a dependent variable y and one
or more independent variables (features) x, assuming a linear relationship between them [4]:

ŷ = θ0 +θ1x1 +θ2x2 + ...+θnxn + ε (3.1)

where ŷ is predicted value; n is the number of features; xi is the ith feature; θ j is jth model
parameter (including the bias term θ0 and the feature weights θ1, θ2,..., θn); and ε is the error
term (the part of y that cannot be explained by the independent variables).

Or in vectorized form:

ŷ = hθ(x) = θ
T · x+ ε (3.2)

where θ is the model’s parameter vector, containing the bias term θ0 and the feature
weights θ1 to θn; θT is the transpose of θ (a row vector instead of a column vector); x is
the instance’s feature vector, containing x0 to xn, with x0 always equal to 1; θT · x is the dot
product of θT and x; and hθ(x) is the hypothesis function, using the model parameters θ; ε is
error term (the part of y that cannot be explained by the independent variables).

The goal of linear regression is to estimate the values of the regression coefficients that
minimise the error term ε = ŷ−θT · x, i.e. to minimise the difference between the predicted
and actual values of y. Common method for ε minimisation is sum of squared errors, mean
square error or root mean square error.

3.1.2 Logistic Regression

When the dependent variable is categorical and binary, meaning it can only have two possible
values (e.g., 0 or 1), logistic regression is used. The goal of logistic regression is to model the
probability of a binary dependent variable y (0 or 1) as a function of one or more independent
variables x. The estimated probability of the model in vectorized form is [4]:

p̂ = hθ(x) = σ(θT · x) (3.3)

where logistic σ is a sigmoid function that calculates a probability that an instance x

27

Chapter 3: Overview of Machine Learning Techniques

belongs to the positive class and outputs the value between 0 and 1:

σ(t) =
1

1+ e−t (3.4)

where t is a linear combination of the independent variables x and their regression
coefficients θ:

t = θ0 +θ1x1 +θ2x2 + ...+θnxn (3.5)

The goal of logistic regression is to estimate values of the regression coefficients θ

that maximise the likelihood of observing the dependent variable y given the independent
variables x. This can be done using maximum likelihood estimation, which involves finding
θ values that maximise the likelihood function. In practice, this is often done using iterative
optimization algorithms such as gradient descent. Logistic regression is commonly used in
binary classification problems, where the goal is to predict whether a data point belongs to
one of two classes (e.g., yes/no, true/false, etc.). However, it can also be used in multi-class
classification problems by extending the logistic function to model the probabilities of
multiple classes and it is called Multinomial logistic regression.

3.1.3 Comparison between Linear and Logistic Regression

Both linear and logistic regression, in terms of similarities, involve fitting a model to data
by estimating parameters that minimise some objective function, such as the sum of squared
errors or the maximum likelihood. They are both based on the assumptions of independence,
linearity, and homoscedasticity (equal variance). Additionally, both methods can be used
for prediction and inference, where prediction involves using the model to make predictions
on new data points, and inference uses the model to test hypotheses about the relationship
between the dependent and independent variables.

However, the key differences between linear and logistic regression are in the type of
dependent variable they are suited to model and the approach they take to modeling the
relationship between the dependent and independent variables; linear regression is used for
continuous outputs (regression) and predicts the values, while logistic regression is used for
categorical outputs (classification) and predicts the probabilities (0,1) of particular outcomes
rather than the outcomes themselves.

3.2 Random Forest (RF)

Random Forest (RF) is a popular ensemble learning method that combines multiple decision
trees [98] at training time and outputs the class that is the mode of the classes (classification)
or mean prediction (regression) of the individual trees, to produce a more accurate and stable

28

Chapter 3: Overview of Machine Learning Techniques

prediction [99, 100].
The algorithm is based on the bagging (bootstrap aggregating) technique, which involves

creating multiple models from subsets of the training data, and then combining their
predictions to reduce overfitting and improve the accuracy of the model. Random forest
algorithm consists of the following steps (Figure 3.2):

• Bootstrapping - a random sample of size n is drawn with replacement from the original
training dataset. This creates a bootstrap sample used to train a decision tree.

• Feature selection - at each node of the decision tree, a random subset of m features is
selected from the total set of p features. This helps to reduce the correlation between
the trees and improve the diversity of the forest.

• Building decision trees - a decision tree is built for each bootstrap sample and selected
features using a specific splitting criterion (e.g. information gain, Gini impurity). The
process is repeated until a predetermined stopping criterion is met (e.g. maximum tree
depth, minimum number of samples per leaf).

• Aggregating predictions - the final prediction of the RF model is obtained by
aggregating the predictions of all decision trees.

– For classification problems, this can be done by taking the majority vote:

ŷ = mode(y1,y2, ...,yn) (3.6)

where y1,y2, ...,yn are the predicted classes from each decision tree.

Figure 3.2. Illustration of random forest [2]

29

Chapter 3: Overview of Machine Learning Techniques

– For regression problems, this can be done by taking the average:

ŷ =
y1 + y2 + ...+ yn

n
(3.7)

where y1,y2, ...,yn are the predicted values from each decision tree.

The combination of bootstrapping and feature selection ensures that each decision tree
is constructed using a different subset of the data and features, leading to a diverse set of
trees that are less prone to overfitting. Therefore, the random forest algorithm has several
advantages over a single decision tree, including better accuracy and reduced overfitting.
Furthermore, RF can handle noisy and high-dimensional data, missing values and outliers,
and provide feature importance measures.

3.3 Support Vector Machine (SVM)

Support vector machine (SVM) [101] is a type of supervised machine learning algorithm
used for classification and regression analysis. It is particularly useful for solving complex
classification problems where the data is not linearly separable.

The basic idea behind SVM is to find the hyperplane that maximally separates the classes
in the data. Hence, SVM is an example of large margin classifier. A hyperplane is a decision
boundary that separates data points into different classes (Figure 3.3). In two-dimensional
space, a hyperplane is just a line, while in higher-dimensional space, it is a plane or a
hyperplane. Therefore, SVM tries to find a hyperplane that separates the training data into
two classes, typically labeled as +1 and -1. The hyperplane is defined by the equation [47]:

Ax−b = 0 (3.8)

where A is the vector of weights of the linear function; x is vector of input data which is
typically represented as a feature vector of n dimensions; and b is the bias term.

To find the optimal hyperplane, SVM looks for the hyperplane that maximises the margin
between the two classes. The margin is the distance between the hyperplane and the closest
data points from both classes. By maximising the margin, SVM ensures that the hyperplane
is as far away from the data points as possible. Therefore, it is less sensitive to noise or
outliers in the data. Data points closest to the margin are called support vectors, because
they are the only ones that matter in determining the hyperplane.

For linearly separable binary class data, in order to maximise the margin, the Euclidean
(L2) norm ||A|| of the weight vector A needs to be minimised. This constraint can be written
as:

yi(Axi −b)≥ 1;∀i = 1, ...,n (3.9)

30

Chapter 3: Overview of Machine Learning Techniques

Since not all datasets are linearly separable, loss function for n points that cross the
margin lines is defined [47]:

1
n

n

∑
i=1

max(0,1− yi(Axi −b))+α||A||2 (3.10)

where A is the vector of weights of the linear function; b is the bias term; xi is support
vector; yi is the class label, where yi =+1 or −1; and α is the soft separability regularization
parameter.

The product yi(Axi −b) is always greater than 1 if the point is on the correct side of the
margin. Thus, the left term of the loss function equals to zero, and the only influence on the
loss function is the size of the margin, depending on value α. The larger values of α result
in more emphasis on widening the margin, and smaller α values result in the model acting
more like a hard margin, while allowing data points to cross the margin, if needed.

Finally, if the data is not linearly separable, SVM uses a kernel function to map the
data into a higher-dimensional space where it becomes linearly separable (kernel trick).
Hence, different kernels are used for different ML problems. The most commonly used
kernel functions are linear, polynomial, and radial basis function (RBF). Once the optimal
hyperplane is found, SVM can be used to classify new data points by checking which side of
the hyperplane they lie on. In summary, SVM is a powerful algorithm for solving complex
classification problems by finding the optimal hyperplane that maximises the margin between
the classes.

Figure 3.3. Illustration of Support vector machine [1]

31

Chapter 3: Overview of Machine Learning Techniques

3.4 K-Nearest Neighbours (kNN)

The k-Nearest Neighbors (kNN) algorithm [102, 103] is a non-parametric machine learning
algorithm used for classification and regression tasks. It is a type of instance-based learning
or lazy learning, where the model does not learn a function from the training data, but instead
stores the training data points in memory to make predictions based on the similarity to the
new data point (Figure 3.4). Hence, all of the calculation is executed at the time the prediction
is requested.

The kNN algorithm consists of following steps:

1. Choosing k: Choosing the number of neighbors to consider when making predictions
(k) [4].

2. Calculating distance metrics: Given a new data point, the algorithm calculates the
distance between the new point and all training points in the dataset to find the
k-nearest neighbors of a new data point. The distance can be calculated using various
distance metrics, such as Euclidean distance, Manhattan distance, Chebyshev distance,
Mahalanobis distance, Canberra distance, Bray-Curtis distance, Cosine similarity, etc.
These are just a few examples of distance metrics that can be used in kNN algorithm.
The choice of distance metric depends on the nature of the problem and the type of
used data [47].

Figure 3.4. Illustration of an example of the k-nearest neighbor algorithm [3]

32

Chapter 3: Overview of Machine Learning Techniques

Common specifications of the distance metric for points x = (x1,x2, ...,xn) and y =

(y1,y2, ...,yn) are:

• Manhattan distance, also known as L1 norm, is distance metric that measures the
distance between two points by calculating the sum of the absolute differences of
their coordinates.

dL1(x,y) =
n

∑
i=1

|xi − yi| (3.11)

• Euclidean distance, also known as L2 norm, measures the shortest distance
between two points in a straight line:

dL2(x,y) =

√
n

∑
i=1

|xi − yi|2 (3.12)

• Minkowski distance, commonly known as Lp norm, is a generalized distance
metric and can be defined as:

dLp(x,y) = p

√
n

∑
i=1

|xi − yi|p (3.13)

where p is a parameter that determines the order of the distance metric. When
p = 1, the Minkowski distance reduces to the Manhattan distance, and when
p = 2, it reduces to the Euclidean distance.

3. Selecting k-nearest neighbors: The algorithm then selects the k-nearest neighbors
based on the calculated distance. The neighbors are k training points that are closest
to the new data point.

kNN algorithm uses a decision boundary to separate the different classes. In the case
of a binary classification task, the decision boundary is simply a line that separates the
two classes. In the case of a multi-class classification task, the decision boundary is a
hyperplane that separates the different classes.

4. Assignig the new data point: The algorithm then assigns the new data point. The way
of assigning depends on type of the task:

(a) Classification: After finding k-nearest neighbors, algorithm assigns the new data
point to the class that is most common among its k-nearest neighbors. In other
words, the algorithm uses the majority class of the k-nearest neighbors as the
predicted class for the new data point.

f (z) = max
j

k

∑
i=1

ϕ(di j)Ii j (3.14)

33

Chapter 3: Overview of Machine Learning Techniques

where j is the number of classes, i is training point, ϕ(di j) is the the weighted
distance from the prediction point to the i, and Ii j is an indicator function if point
i is in class j.

(b) Regression: For regression tasks, algorithm assigns the new data point the
average value of the k-nearest neighbors. In other words, the algorithm calculates
average of the target values of the k-nearest neighbors and assigns it as the
predicted target value for the new data point.

f (z) =
1
k

k

∑
i=1

ϕ(di) (3.15)

where i is training data point, and ϕ(di j) is distance from the prediction point to
the training point.

5. Repeat: The algorithm repeats steps 2−4 for every new data point in the test set.

That being said, when using kNN algorithm, there are some important things to consider:

• The value of k can also impact the performance of the algorithm. A smaller value of k

may lead to overfitting, while a larger value of k may lead to underfitting.

• The choice of the distance metric can have a significant impact on the performance of
the algorithm. For example, the Manhattan distance may not work as well as Euclidean
distance in higher dimensions, as it can give equal importance to each dimension and
may not take into account the correlations between them. On the one hand, Manhattan
distance can be useful in cases where features have different units or scales and cannot
be compared on the same scale, as well as, when the data is structured in a grid-like
pattern. On the other hand, Euclidean distance is preferred when the data is spread
out in all directions, such as in a continuous space. Furthermore, the computational
complexity of calculating the Minkowski distance increases with the value of p, as it
involves taking the p−th power of the differences between the coordinates. Therefore,
choosing a large value of p can lead to slower performance of the kNN algorithm.

• The kNN algorithm can be sensitive to the scale of the features. For example, if
one feature has a much larger range of values than the other features, then it will
dominate the distance metric. To avoid this issue, it is often necessary to normalize or
standardize the data before using kNN.

• The kNN algorithm can be computationally expensive, especially when dealing with
large datasets. One way to reduce the computational complexity is to use data
structures like KD trees [104] or Ball trees [105] to store the training data points,
which can speed up the search for the nearest neighbors.

34

Chapter 3: Overview of Machine Learning Techniques

3.5 Artificial Neural Networks (ANN)

Artificial neural networks, commonly called neural networks got their name from biology,
since they are inspired by animal brain i.e. biological neural networks [47–49]. They
were introduced in 1943 by neurophysiologist Warren McCulloch and the mathematician
Walter Pitts [106]. Neural networks are commonly used in supervised manner, but some
neural network architectures can be unsupervised, such as autoencoders and restricted
Boltzmann machines. Deep belief networks and unsupervised pretraining are example of
semisupervised neural networks [4]. The most common deep neural networks are multilayer
perceptrons (MLP), convolutional neural networks (CNN) and recurrent neural networks
(RNN). Although CNN, especially one dimensional CCNs can be used for time series data,
throughout the next subchapters only ANNs used in this dissertation will be explained,
namely MLP and RNN.

3.5.1 Multilayer Perceptron (MLP)

A multilayer perceptron (MLP), also known as feedforward artificial neural network is the
simplest ANN [107]. MLP is a mathematical function mapping set of input values to output
values. The function is formed by composing many simpler functions. While mapping input
values x to output values y = f (x;θ), it learns the value of parameter θ that gives the best
function approximation [48].

As shown in Figure 3.5, MLP consists of three main layers; one input layer, one or more
hidden layers and one output layer. ANN that has two or more hidden layers is called a

9

Figure 3.5. Multilayer Perceptron [4]

35

Chapter 3: Overview of Machine Learning Techniques

deep neural network (DNN). For example, there might be three functions f 1, f 2 and f 3
connected in a chain, to form f (x) = f 3(f 2(f 1(x))). In this case, f 1 is the first layer of
the network, f 2 is the second layer, and f 3 is the third. The number of these functions is
the depth of the model. Each hidden layer contains multiple neurons – elementary units in
an ANN that determines the width of the model. The neuron in ANN receives one or more
inputs and sums them to produce an output (or activation). MLP commonly uses a non-linear
activation functions, such as sigmoid, softmax, hyperbolic tangent (tanh) and rectified linear
unit (ReLU) [4, 48].

MLP activation functions:

• Sigmoid function - a non-linear activation function that maps any input value to a value
between 0 and 1. It is often used in the output layer of MLPs for binary classification
problems.

• Softmax function - a non-linear activation function that maps a vector of input values
to a probability distribution that sums to 1. It is often used in the output layer of MLPs
for multi-class classification problems.

• Hyperbolic tangent (tanh) - a non-linear activation function that maps any input value
to a value between -1 and 1. It is often used in the hidden layers of MLPs.

• Rectified linear unit (ReLU) - a non-linear activation function that maps any input
value less than 0 to 0, and any input value greater than 0 to the input value itself. ReLU
is often used in the hidden layers of MLPs to overcome the numerical problems related
to the sigmoids. It is commonly used for large datasets since it usually converges the
fastest.

3.5.2 Recurrent Neural Networks (RNN)

Recurrent neural networks or RNNs [108] are a family of neural networks for processing
sequential data. It looks very much like a MLP, except it has connections pointing backward.
Figure 3.6 depicts one recurrent neuron receiving input x, producing an output y, and sending
that output back to itself. At each time step t, neuron input x(t) and the output the previous
time step y(t −1). RNN is specialized for processing a sequence of values x(1), ...,x(t).

RNN will be described in more detail on example of long short-term memory neural
networks which are commonly used.

Long Short-Term Memory (LSTM) Neural Networks

Long short-term memory (LSTM) neural network [109] is a type of RNN that has a feedback
connection. Along with single data points it can process data sequences as well. A common
LSTM cell contains an input gate, an output gate and a forget gate, as depicted in Figure 3.7.

36

Chapter 3: Overview of Machine Learning Techniques

The cell remembers the values over a time period and three gates (input, output and forget
gate) regulate the data flow in and out of the cell. The forget gate decides which information
will be removed from the cell state. The input gate decides which states will be updated
and the output gate decides which part of the cell states will be outputted. Therefore, LSTM
has the ability to remove or add information to the cell state, instead of a mechanism that
completely overrides cell states taken by classical RNN [47, 49, 84].

LSTM cell state is split in two vectors: h(t) and c(t); h(t) stands for short-term state while
c(t) stands for the long-term state. On one hand, an input vector x(t) and a previous short-term
state h(t−1) are used as inputs to the four different fully connected layers, namely f(t), g(t),
i(t) and o(t) depicted in Figure 3.7. The main layer that analyses x(t) and h(t−1) outputs g(t),
which is used for calculating h(t) and output vector y(t) expressed with:

g(t) = tanh(Wxg
T ∗ x(t)+Whg

T ∗h(t−1)+bg) (3.16)

On the other hand, a previous long-term state c(t−1) enters the cell and goes through the forget
gate, which defines parts of the long-term state that should be forgotten, and is controlled by
the output of the f(t) layer expressed with:

f(t) = σ(Wx f
T ∗ x(t)+Wh f

T ∗h(t−1)+b f) (3.17)

where bg and b f are bias terms, Wxg and Wx f are weight matrices of the input vector x(t), and
Whg and Wh f are weight matrices of the previous short-term state h(t−1).

Other layers also give logistic output, namely 0 or 1, which control the closing and
opening of the gates, respectively. Layer i(t) controls the input gates, while o(t) controls

Figure 3.6. A recurrent neuron [4]

37

Chapter 3: Overview of Machine Learning Techniques

Figure 3.7. Long short-term memory (LSTM) cell [4]

the output gates, and both can be expressed with:

i(t) = σ(Wxi
T ∗ x(t)+Whi

T ∗h(t−1)+bi) (3.18)

o(t) = σ(Wxo
T ∗ x(t)+Who

T ∗h(t−1)+bo) (3.19)

where bi and bo are again bias terms, while pairs of Wxg and Wx f , as well as Whg and Wh f are
weight matrices of the input vector x(t) and the previous short-term state h(t−1), respectively.

When some long-term memories are removed, output from the forget gate is combined
with g(t), which gives a long-term state:

c(t) = f(t)⊗ c(t−1)+ i(t)⊗g(t) (3.20)

Additionally, the output from g(t) goes through the input gate, which defines what part of it
should be combined with a duplicate of the long-term state c(t). Such, they enter the tanh

function and go through the output gate, which defines what part of it should be outputted as
both h(t) and y(t), expressed with:

y(t) = h(t) = o(t)⊗ tanh(c(t)) (3.21)

Output y(t), as well as the short-term state h(t) and the long-term state c(t) are given for each
input x(t), which is represented in a form of time series data.

38

Chapter 3: Overview of Machine Learning Techniques

Figure 3.8. One class classification vs multi-class classification/detection [5]

3.6 One Class Classification

All algorithms previously described in this chapter can be used for either, regression or
classification of binary or multiple classes. In traditional classification problems, the goal
is to predict the class label of a new data point based on a set of features and a labeled
dataset. However, in some cases, it may be difficult or even impossible to obtain negative
examples or data from other classes, making it challenging to train a traditional classification
model.

One class classification, which is commonly used for anomaly detection, addresses this
problem by learning a model of the positive class using only positive examples. Later, the
classifier encounters data from both the positive and negative class. The goal of one class
classification is to determine whether an observed data point belongs to the class observed
during training (positive class). The term one class classification (OCC) was introduced by
Moya and Hush in 1996 [110].

Figure 3.8 illustrates differences between the OCC and multi-class detection and
classification. The key difference is that OCC has only data from the positive class during
training. The learned classifier defines a boundary that encompasses positive data with the
hope that it will provide good separation from the other objects in the world. In the absence
of multiple class data, both learning features and defining classification boundaries become
more challenging in OCC compared to multi-class classification [5].

OCC has many applications, such as in fraud detection, intrusion detection, and anomaly
detection, where the goal is to identify rare events or instances that do not conform to the
norm. Furthermore, since OCC is commonly used to detect abnormal data points, it can be
used to address issues related to severely imbalanced datasets, which are common in Big
data [111].

In the remainder of this chapter, two OCC algorithms used in the dissertation will be
described, namely one class support vector machine and an isolation forest.

39

Chapter 3: Overview of Machine Learning Techniques

Figure 3.9. One class support vector machine [6]

3.6.1 One Class Support Vector Machine (OCSVM)

One class support vector machine (OCSVM) is unsupervised model for anomaly or outlier
detection. Unlike the regular supervised SVM, the OCSVM does not have target labels
for the model training process. Instead, it learns the boundary for the normal data points
and identifies the data outside the border to be anomalies (Figure 3.9). It works on the
basic idea of minimising the hypersphere of the single class of examples in training data and
considering all other samples outside the hypersphere to be outliers or out of training data
distribution [112].

To train a OCSVM, the algorithm first maps the input data to a higher-dimensional
space, where it can more easily find a boundary between the data points. Then, it selects
a hyperplane that maximises the margin between the data points and the hyperplane.

For a set of n data points in p-dimensional space, denoted by x1,x2, ...,xn, OCSVM
is looking for a hyperplane that separates these points from the rest of the space. The
hyperplane is represented with the equation:

Ax−b = 0 (3.22)

where A is the vector of weights of the linear function; x is vector of input data which is
typically represented as a feature vector of n dimensions; and b is the bias term.

To find the optimal hyperplane, following optimization problem needs to be solved [112]:

min
A∈F,ξ∈RN ,b∈R

1
2
||A||2 + 1

Nv

N

∑
i=1

ξi −b (3.23)

40

Chapter 3: Overview of Machine Learning Techniques

subject to:
Axi ≥ b−ξi,ξi ≥ 0 (3.24)

where N is the dataset length used for training; v is the regularization parameter; ξi is
the slack variable corresponding to each dataset; ω and ρ are the decision planes that can be
decided with participation; and ||A||2 is the Euclidean (L2) norm of the weight vector A.

Weight vector A and bias term b that define the hyperplane can be found by solving the
above optimization problem. The support vectors are the data points that lie on the margin
or inside the margin, and they are used to determine the boundary of the class. To classify a
new data point x, Ax− b should be computed. If the result is Ax− b ≥ 0, the point belongs
to the same class as the training data. Otherwise, it is considered an outlier.

3.6.2 Isolation Forest (IF)

Isolation forest (IF) is an unsupervised algorithm that works by randomly partitioning data
and creating a tree-based structure to isolate the anomalies, which are the instances that do
not fit model of the normal data (Figure 3.10). The basic idea behind IF is that anomalies are
more likely to be isolated in fewer steps than normal data points [113].

Let’s say there is a dataset with n data points, denoted by x1,x2, ...,xn. In order to isolate
anomalies, isolation forest algorithm will execute the following steps:

1. Randomly select a feature from the dataset.

2. Randomly select a split value: The split value is chosen uniformly at random between
the minimum and maximum values of the selected feature.

Figure 3.10. Isolation forest [7]

41

Chapter 3: Overview of Machine Learning Techniques

3. Partition the data based on the selected feature and split value: The data is then divided
into two subsets based on the selected feature and split value. If a data point is less
than or equal to the split value, it is assigned to the left subset, otherwise it is assigned
to the right subset. The process is then repeated recursively for each subset until each
data point is isolated in its own leaf node. The number of steps required to isolate a
data point is defined as the data point’s path length. The path length is the number
of edges from the root node to the leaf node containing the data point. The average
path length h(x) for a given dataset is then computed by constructing multiple trees
using random features and split values. The average path length is used to compute an
anomaly score for each data point, which is defined as [113]:

c(n) = 2H(n−1)− 2(n−1)
n

(3.25)

where H(i) is the harmonic number and it can be estimated by ln(i) + Euler’s constant
(e); c(n) is the average of h(x) for given n, it is used to normalise h(x).

The anomaly score s(x) is a measure of how easily a data point can be isolated in the
tree. The anomaly score s of an instance x is defined as:

s(x,n) = 2−
E(h(x))

c(n) (3.26)

where E(h(x)) is the average of h(x) from a collection of isolation trees. In Equation
3.26:

• when E(h(x))→ c(n),s → 0.5;

• when E(h(x))→ 0,s → 1;

• when E(h(x))→ n−1,s → 0

4. Repeat steps 1-3 until each data point is isolated in its own leaf node.

• if instances return s very close to 1, then they are definitely anomalies,

• if instances have s much smaller than 0.5, then they are quite safe to be regarded
as normal instances

• if all the instances return s ≈ 0.5, then the entire sample does not really have any
distinct anomaly

5. Once the anomaly scores are computed, a threshold can be set to classify data points
as anomalies or normal data points. Data points with scores below the threshold are
classified as anomalies since they require fewer steps to be isolated.

Furthermore, IF can be easily parallelized, making it scalable to large datasets. It is

42

Chapter 3: Overview of Machine Learning Techniques

also an efficient algorithm for high-dimensional data since it is not affected by the curse of
dimensionality like other algorithms such as k-means clustering.

The main hyper-parameters of IF are the number of trees and the maximum depth of each
tree. Increasing the number of trees improves accuracy of the algorithm but also increases
the computational cost. However, increasing the maximum depth of each tree improves the
accuracy but may lead to overfitting.

3.7 Comparison and Summary

This chapter gave an overview of the ML techniques used in the herein presented dissertation,
namely linear and logistic regression, random forest, support vector machine, k-nearest
neighbors, artificial neural networks (multilayer perceptrons and long short-term memory)
and one class classification algorithms (one class support vector machine and isolation
forest).

Linear regression is a simple and widely used regression algorithm which works by fitting
a line to the data and minimising the sum of the squared distances between predicted and
actual values. It is useful when the relationship between the input variables and the output
variable is linear.

Logistic regression is a type of regression algorithm used for binary classification
problems which works by fitting a sigmoid curve to the data and predicting the probability
of the output variable being 1. It is useful for the binary outputs.

Random forest is an ensemble learning algorithm that uses multiple decision trees to
make predictions which works by generating a large number of decision trees and then
combining their predictions. It is useful when dealing with complex data with many input
variables.

Support vector machine (SVM) is a popular algorithm used for classification problems
which operates by finding a hyperplane in high-dimensional space that maximises the margin
between the two classes. It is useful when working with high-dimensional data.

K-nearest neighbors (kNN) is a simple algorithm used for classification and regression
problems which works by finding the k closest training examples to a new data point and
makes a prediction based on their output values. It is useful when working with small
datasets and simple classification problems.

Artificial neural networks (ANN) are algorithms modeled based on the structure and
function of the human brain. They can learn complex non-linear relationships between
inputs and outputs. This chapter describes two types of ANNs, multilayer perceptrons (MLP)
and long short-term memory (LSTM). MLP is useful for problems with multiple inputs and
outputs, whereas LSTM is useful for handling sequential data such as time series.

One class classification algorithms are used for outlier detection, where the goal is to
identify anomalies in a dataset that do not belong to any known class. One class support

43

Chapter 3: Overview of Machine Learning Techniques

vector machine (OCSVM) is a common type of one class classification algorithm that works
by fitting a hyperplane that encloses the training data and then classifying new data points
as either inside or outside of this hyperplane. Isolation forest (IF) is another OCC algorithm
that works by isolating data points in trees based on how easily they can be separated from
the rest of the data.

Finally, the choice of algorithm depends on the specific problem and the characteristics
of the dataset. Therefore, it is important to understand the strengths and limitations of each
algorithm and to experiment with different models to find the one that performs best for a
specific problem.

44

4 Dynamic Monitoring Frequency for Energy-Efficient
Data Collection in IoT

The goal of the first part of herein presented research [33] aims to build an IoT network that
not only reduces the amount of data circulating through the network, but also reduces the
amount of energy consumed by sensors. In order to do so, a domain expert must select an
optimal equally spaced time period that is short enough to reduce data volume but still long
enough to retain requested accuracy. Selecting such a fixed period i.e. static monitoring

frequency (SMF) is a challenging task. On one hand, if a period is too short, lots of irrelevant
and redundant data is collected. On the other hand, if a period is too long, significant changes
in an observed signal may be missed. Consequently, due to signal variations over time, a
fixed period can be too short on one part of the signal, while being too long on the other part
of the same signal. Therefore, the expert has to find a compromise between the volume of
collected data and its accuracy.

In this research, we propose to adapt a period to a signal as time passes i.e., dynamic

monitoring frequency (DMF). Ideal DMF algorithm should result without irrelevant or
redundant data as well as without missed significant changes. In other words, DMF goes
one step further by searching for an optimal period in every time step, thus reducing the
energy consumption and saving a sensor battery. Consequently, DMF algorithm collects
data by an event, namely an acceptable change of monitored sensor readings, i.e., sensors are
turned on only when the acceptable change defined by domain expert is expected, and sleep
in the meanwhile. For instance, an event can be the change in air temperature of ±0.5°C.
Therefore, in an ideal case, the next reading should take place only when the temperature is
expected to change by 0.5°C.

We use two methods to prepare an algorithm that can predict when an acceptable change
in value is expected, namely statistical and machine learning (ML) [4, 47]. On one hand,
the statistical algorithm calculates probability of the acceptable change taking place based
on data distribution in the past. On the other hand, the ML algorithm compares different
ML classification algorithms, namely logistic regression, random forest and artificial neural
network that predict future period when the acceptable change is expected.

Our DMFs algorithms are trained using a temperature dataset and later verified on
humidity and air pressure datasets. Predictions are made on a temperature change of 0.5°,
0.75°C, 1°C and 1.5°C, humidity change of 5% and pressure change of 0.5hPa. Results of

45

Chapter 4: Dynamic Monitoring Frequency for Energy-Efficient Data Collection in IoT

DMF algorithm are compared to the results of two baseline algorithms with static monitoring

frequency (SMF) i.e. with a fixed reading period. The first SMF baseline algorithm collects
the same amount of data as DMF algorithm, while the second SMF baseline algorithm has
the same number of errors as DMF. An error is defined as a percentage of readings that
should have been collected due to an occurrence of the acceptable change, but were skipped.

In summary, the contributions of this research include a systematical analysis and process
definition for creating DMF algorithms. More specifically:

• We create DMF algorithms using statistical and machine learning approaches, where
former reduces the number of readings more than ∼ 40%, or number of errors up to
∼ 70%, while latter when using random forest algorithm either reduces number of
readings by ∼ 30%, or number of errors up to ∼ 70%.

• We address energy efficiency aspects of our proposed solution showing that ∼ 40%
less readings means ∼ 40% longer sensor sleep period. Consequently, sensors using
DMF algorithm may save more than 9 hours of battery life every day, compared to
sensors that use standard SMF algorithm.

• We demonstrate that significant accuracy can be achieved when algorithms are trained
on variable size datasets, i.e., 1-day training dataset has acceptable accuracy for some
use cases, while training on 6-month dataset has accuracy comparable to the accuracy
of DMF trained on 2-years dataset.

• We compare processing complexity of all DMF algorithms and show that the
complexity of statistical DMF has quadratic dependence to a period length, while least
complex are linear regression and random forest, which performs better than neural
network that exhibits higher complexity.

The rest of this chapter is organized as follows. Introduction is followed by section 4.1,
which describes our dataset and the baseline algorithms. Section 4.2 explains our proposed
algorithms, while section 4.3 presents results. Section 4.4 discusses energy efficiency,
training dataset size and processing complexity of our algorithms. Last section concludes
the chapter.

4.1 Problem Statement and Datasets

In this section, we formally define the problem statement, describe the baseline algorithm
compared with our approach, and present datasets used for the preparation and evaluation of
our algorithms.

46

Chapter 4: Dynamic Monitoring Frequency for Energy-Efficient Data Collection in IoT

4.1.1 Problem Statement

When IoT sensors monitor an environment, they can read data at any time ti. A moment
when data is actually read is defined as τ j, while time passed between two consecutive
readings is defined as a reading period ∆τ j = τ j − τ j−1. If ∆τ j is always the same, it is
called a static (fixed) period (periodSMF = ∆τi = ∆τ j,∀ i, j ∈N). A sensor value read at τ j is
defined as v(τ j), while a difference in values between two consecutive readings is denoted as
∆v(τ j) = abs(v(τ j)−v(τ j−1)). On one hand, ∆v(τ j) can vary due to changes in an observed
phenomenon, e.g., changes in a temperature. On the other hand, it changes as the reading
period changes, i.e., by the rule of thumb longer ∆τ j gives higher ∆v(τ j), and vice versa.

For most use cases, not all ∆v(τ j) are equally important. Thus, a user wants to ignore
every ∆v(ti) that is lower than the maximum acceptable difference between two consecutive
readings denoted as ∆max. If ∆τ j is too short, ∆v(ti) is usually redundant or irrelevant
(∆v(τ j) << ∆max), causing unnecessarily large number of readings (NoR). However, if ∆τ j

is too long, ∆v(τ j) may be higher than the maximum acceptable difference (∆v(ti)> ∆max).
Consequently, long ∆τ j sometimes results with missed changes higher than ∆max, i.e, it
creates large number of errors (NoE). Full terminology is depicted in Figure 4.1 and
explained in Abbreviations and Notations table (Table 4.1).

4.1.2 Baseline Algorithm

Static monitoring frequency, i.e., having a fixed ∆τ j denoted as periodSMF , is used as a
baseline algorithm. Figure 4.2 shows the relation between the fixed collection periodSMF

on x− axis and expected differences between consecutive readings (deltas ∆v(τ j)) on y−

𝑡𝑖−4 𝑡𝑖−3 𝑡𝑖−2 𝑡𝑖 𝑡𝑖+1 𝑡𝑖+2 Real time

value

... 𝑡𝑖+60

Δmax

Δmax

Δmax

Δmax

Δv(𝑡𝑖+1)

Δv(τ𝑗)

τ𝑗 τ𝑗+1τ𝑗−1

𝑡𝑖−1

Δ(τ𝑗)Δ(τ𝑗−1)

Sampling time

Δv(τ𝑗+1)

Figure 4.1. Problem Description

47

Chapter 4: Dynamic Monitoring Frequency for Energy-Efficient Data Collection in IoT

Table 4.1. Abbreviations and Notations

Label Description

SMF Static (uniform) monitoring frequency
DMF Dynamic monitoring frequency

S-DMF Statistical dynamic monitoring frequency
ML-DMF Machine learning dynamic monitoring frequency

∆max Maximum acceptable absolute difference between two consecutive
readings

NoR Number of Readings
NoE Number of Errors
PoR Percentage of Errors

ti Discrete time moment when data collection is possible
τ j Discrete time moment when data is collected

v(xi) Value in discrete moment xi

∆v(xi) Absolute difference in value between two consecutive discrete time
moments xi and xi−1; ∆v(xi) = abs(v(xi)− v(xi−1))

target_accuracy minimal level of accuracy for statistical algorithm [%]
percentile Percentile is calculated on set of values representing the difference

between current and last delta value, for defined target_accuracy;
percentile(target_accuracy,∆v(ti)−∆v(ti+P)), P ∈ [1,60]

periodSMF Static period used in SMF algorithm

axis that can occur while using that fixed period. Deltas on y − axis represent an upper
boundary for 3 different scenarios, namely, 99%, 95% and 90% percentiles. Percentiles
define a percentage of occurred deltas (∆v(τ j)) that are under the delta value on y− axis

for specific fixed period (periodSMF). For example, 99% of ∆v(τ j) is under 0.5°C when
periodSMF < 8 minutes. These calculations can be used for selecting periodSMF , i.e. NoR
for a targeted delta and a desired level of accuracy, i.e. NoE.

In order to collect data only when ∆max is expected, dynamic monitoring frequency
(DMF) must be used, i.e., finding an ideal period ∆τ j for every τ j.This can be done offline by
analysing a complete dataset and reading only those τ j where ∆τ j < ∆max. This method we
denote as DMForacle, which is not feasible in real-time systems as it requires batch processing
of the entire dataset, while in real-time systems data arrives by streaming. In order to use
DMF in real-time systems where it is important to detect an event, we must predict τi+1

when ∆max is going to happen.

48

Chapter 4: Dynamic Monitoring Frequency for Energy-Efficient Data Collection in IoT

0 10 20 30 40 50 60
Fixed period (min)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

D
el

ta
 (

°C
)

90%
95%
99%

Figure 4.2. Minimum period for maximum delta

4.1.3 Solution Space

Figure 4.3 shows a single day temperature data and how data is collected with the two
algorithms, namely the baseline algorithm that collects data with SMF and DMForacle. Solid
blue line in Figure 4.3 represents raw data collected with the baseline algorithm that collects
data every minute (periodSMF = 1). As it is visible from the blue line, there are many similar
data points where ∆v(ti) < 0.5°C. Those data points can be omitted by selecting τ j > ti.
The dotted green line depicts an ideal data collection with DMForacle for a single day data,
where data is collected only when ∆max = 0.5°C. There are only 37 values collected that day,
instead of 1440 actually collected values with the baseline algorithm where periodSMF = 1.

As DMF algorithm collects data dynamically, the amount of collected data is known
only after the data is collected. Consequently, after DMForacle collects the data, the results
are compared with the baseline SMF algorithm that collects the same NoR, as shown with
the dashed orange line. The periodSMF = 39 minutes results with ∆v(ti) ∈ [0.1°C, 1.3°C].

4.1.4 Datasets

Datasets used in this research are collected every minute during almost 3 years (1/Jan/2017
- 6/Nov/2019), thus they contain 1 490 164 readings per monitored phenomenon. Datasets
include weather data, namely temperature, humidity and air pressure. Temperature range is
-4.8°C to 36.9°C, humidity ranges between 17.0% and 95.0%, while air pressure dataset has
range between 989.89hPa and 1034.39hPa. Figure 4.4a depicts 3-year temperature dataset,

49

Chapter 4: Dynamic Monitoring Frequency for Energy-Efficient Data Collection in IoT

01-01 00
01-01 03

01-01 06
01-01 09

01-01 12
01-01 15

01-01 18
01-01 21

01-02 00

Date

6

7

8

9

10

11

12

Te
m

pe
ra

tu
re

 se
ns

or
 re

ad
in

gs
[°

C]

Temperature
Temperature with static period=39
Temperature with dynamic period

Figure 4.3. One day data collection with the ideal reading algorithm

while Figure 4.4b shows the change between neighbouring values (∆v(τi)) for basic periods
∆τi = periodSMF = 1,10,60 minutes. As it is visible from the histogram, for periodSMF =

1 minute in most cases ∆v(τi) ∈ [0°C, 0.2°C]. As periodSMF increases to 10 minutes and 60
minutes, ∆v(τi) increases as well.

As a proof of concept, DMForacle algorithm is executed on the entire 3-year temperature
dataset. For ∆max = 0.5°C, only 21 305 data points are read, instead of total values, with
the average reading period of 68 minutes. Larger difference between consecutive readings
is tolerable in case of ∆max = 1°C where only 8 752 data points are read, with an average
reading period of around 166 minutes.

4.2 Statistical and Machine Learning Algorithms

In order to reduce the amount of collected data, dynamic monitoring frequency (DMF)
algorithms are trained. The goal of DMF is to collect data by an event, i.e., only when ∆max

is expected. To achieve this goal, two algorithms are proposed, namely statistical (S-DMF)
and machine learning (ML-DMF). Both algorithms are prepared on the temperature dataset
and then verified on humidity and air pressure datasets. Data collected during first two years
(2017 and 2018) is used as a training set. The algorithms are then evaluated against the last
year (2019) dataset.

50

Chapter 4: Dynamic Monitoring Frequency for Energy-Efficient Data Collection in IoT

2017-01
2017-05

2017-09
2018-01

2018-05
2018-09

2019-01
2019-05

2019-09

Date

0

10

20

30

Te
m

pe
ra

tu
re

 s
en

so
r r

ea
di

ng
s

[°
C]

Air Temperature

(a) Temperature dataset

0 1 2 3 4 5
Difference between neighbouring values [°C]

0

50000

100000

150000

200000

250000

300000

350000

Nu
m

be
r o

f s
am

pl
es

1min period
10min period
60min period

(b) Difference between neighbouring values

Figure 4.4. Dataset

4.2.1 Statistical Algorithm (S-DMF)

The S-DMF algorithm works by calculating the distribution of historical data. The algorithm
predicts period ∆τ j based on a distribution of change in neighbouring values (∆v(τ j)) for
expected ∆max and target_accuracy. The distribution ∆v(τ j) is based on a previous reading
period ∆τ j−1 = τ j−1−τ j−2 and a previous value v(τ j−1). The example of ∆v(τ j) distribution
for target_accuracy= 99% and ∆max = 1°C is shown in Figure 4.5. As depicted in the figure,
for 1 minute period ∆v(τ j) is rarely above 1°C, thus reading period ∆τ j should be longer.

The Algorithm 1 explains how the S-DMF algorithm works. As shown in the algorithm,
the first step is to define ∆max and expected target_accuracy. For expected target_accuracy,
percentiles of ∆v(ti+P) are calculated for every period P ∈ [1,60]. This step is followed
by the calculation of tolerance defined as a difference between ∆max and ∆v(τ j−1). The

51

Chapter 4: Dynamic Monitoring Frequency for Energy-Efficient Data Collection in IoT

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Difference between neighbouring values [°C]

0

2000

4000

6000

8000

10000
Nu

m
be

r o
f s

am
pl

es

Figure 4.5. Distribution of differences between neighbouring values for
target_accuracy = 99%, ∆max = 1°C

Algorithm 1 S-DMF algorithm
Input: ∆max, target_accuracy;
∆v(τ j) = abs(v(τ j)− v(τ j−1));
τ j = ti;
percentile = table(target_accuracy,∆v(ti+P)−∆v(ti)),

P ∈ [1,60]
tolerance = ∆max −∆v(τ j−1);
while(P ∈ [1,60] and percentile[ti+P]< tolerance) :

period = P;
P = P+1;

Output: period;

algorithm loops through a dataset and compares tolerance with percentile for the incoming
60 readings in discrete times ti+1, ..., ti+60. Loop ends when percentile[ti+P],P ∈ [1,60]
reaches tolerance, hence selecting P as the future read period.

4.2.2 Machine Learning Algorithm (ML-DMF)

Since the S-DMF algorithm predicts the future period based on two features, namely the
previous period ∆τ j−1 and the value change ∆v(τ j−1), the same two features are used to
prepare a ML-DMF algorithm. The ML-DMF algorithm is trained by taking ∆τ j−1 and
∆v(τ j−1) as ML features to predict future period τ j when ∆max is expected. Three different

52

Chapter 4: Dynamic Monitoring Frequency for Energy-Efficient Data Collection in IoT

Table 4.2. ML hyper-parameters for 2 features and 4 features
(*max_ f eatures is used only for 4 features RF)

Algorithm Parameters

Logistic Regression Default parameters

Random Forest
number of trees = 100, 500, 1000
*max_ f eatures = 2, 3, 4

Artificial Neural Network
batch_size = 128, 512
nodes = 100, 300
learning rate = 0.01, 0.001, 0.0001

ML algorithms are used, namely logistic regression (LR) as linear model, random forest (RF)
as tree-based model and artificial neural network (ANN) as non-linear model.

Since modeling ML-DMF is quite different than modeling S-DMF algorithm, i.e., adding
additional features to ML model is quite straightforward, ML models with additional features
can be easily trained. Additional features usually increase accuracy of the proposed solution,
thus two new features are selected, namely a day of the year (1-366) and an hour of the
day (0-23). The same three above mentioned ML algorithms, LR, RF and ANN, are used
for training additional ML models. A set of hyper-parameters is used to train RF and ANN
models, as shown in Table 4.2.

S-DMF algorithm has the additional parameter target_accuracy, which represents the
trade-off between the accuracy and the amount of data, since more data has to be collected
to acquire higher accuracy. Such parameter can not be added to the ML model in a
straight-forward manner. Therefore, we use ML algorithms for classification, where we
define a set C that holds nC = 60 classes, namely each class c representing a period in range
of 1 to 60 minutes (C = {1,2,3...59,60}). However, instead of taking a single most probable
class given by the algorithm, we take a number of considered classes CC ⊂ C with size
nCC, and select a class c with the lowest value (c = min(CC)), namely the shortest period.
Consequently, as nCC increases, the accuracy increases as well due to shorter reading period,
while the highest possible period decreases (periodmax = 60−nCC).

4.3 Performance Comparison between Static and Dynamic
Monitoring Frequencies

In this section, we compare S-DMF and ML-DMF algorithms with SMF, using temperature,
humidity and air pressure datasets. Subsection 4.3.1 compares S-DMF with SMF, while
in subsection 4.3.2 we select representative algorithms of each of the three categories of

53

Chapter 4: Dynamic Monitoring Frequency for Energy-Efficient Data Collection in IoT

ML approaches and compare them with SMF. Last subsection 4.3.3 compares S-DMF, three
ML-DMFs and SMF algorithms.

When comparing results, it is important to understand the compromises between the
amount of collected data, namely the number of readings (NoR) and the number of errors
(NoE). Decrease in NoE, results with higher NoR and vice versa. On one hand, for systems
where the longest possible battery life is needed, i.e. non-critical systems such as smart
agriculture systems, where there are a lots of sensors in large fields or inaccessible locations,
higher NoE can be considered. On the other hand, sensitive systems that need the highest
accuracy, i.e. critical systems such as elderly care systems, where missed information
can create significant loss (of life), should utilize higher NoR. When comparing DMF
algorithms and SMF algorithm, the above mentioned metrics are used. Each DMF algorithm
is compared with two instances of the SMF algorithm. First SMF instance collects the same
amount of data as DMF, i.e., NoR is the same, while other SMF instance is the one that has
the same NoE as DMF algorithm.

4.3.1 Statistical Algorithm (S-DMF) Performance

Results for the temperature dataset with ∆max = 0.5°C are depicted in Figure 4.6. SMF curve
contains data with collection period of 1 to 60 minutes. S-DMF contains NoR and NoE
for multiple target_accuracy = {10%, ...,99.9%}. Logarithmic scale in Figure 4.6 is used
to emphasize that SMF works slightly better when higher NoE is tolerated, while S-DMF
algorithm introduces less errors in case of lower tolerance to errors. Table 4.3a and Figure
4.7 show the results for S-DMF algorithm for three target_accuracy, namely 95%, 99% and
99.9%. S-DMF algorithm guarantees that the percentage of errors will be below selected
target_accuracy, e.g. 99%. As expected, higher target_accuracy results with lower NoE,
while more data is collected. Results for maximum acceptable delta ∆max of 0.5°C, 0.75°C,
1°C and 1.5°C are shown in Table 4.3a. The lower ∆max is, the algorithm collects more data
(i.e., higher NoR) with the shorter average collection period.

In case of the S-DMF algorithm with target_accuracy = 99% for ∆max = 1°C, the
algorithm collects 31 033 data points (∼ 7% of total 438 963 data points). Moreover, it
introduces 609 errors (∼ 0.14%). As S-DMF collects data with an average period of 14.14
minutes, the results are compared to the results of SMF with periodSMF of 14 minutes. In
case of periodSMF = 14, 31 355 data points are collected, while introducing 1 093 errors.
That said, our S-DMF has ∼ 45% less errors compared to SMF algorithm that collects the
same amount of data. Period of SMF algorithm with the same NoE is 12 minutes. In case of
periodSMF = 12, 36 581 data points are collected, while introducing 726 errors. However,
S-DMF collects ∼ 15% less data compared to SMF. That being said, S-DMF results either
with lower NoE when NoR is the same, or with lower NoR when NoE is the same, compared
to SMF.

54

Chapter 4: Dynamic Monitoring Frequency for Energy-Efficient Data Collection in IoT

0
100000

200000
300000

400000

Number of Readings

0

10000

20000

30000

40000

50000

60000

70000

Nu
m

be
r o

f E
rro

rs

104
105

NoR

102

103

104

105

No
E

SMF
DMF statistical

Figure 4.6. Results of S-DMF algorithm compared to SMF for temperature dataset with
∆max = 0.5°C;

Inner image depicts results on logarithmic scale

accuracy=99%
delta=0.5

accuracy=99%
delta=1

accuracy=95%
delta=0.5

accuracy=95%
delta=1

Algorithm

0

25000

50000

75000

100000

125000

150000

175000

Nu
m

be
r o

f R
ea

di
ng

s

S-DMF
SMF with the same NoR
SMF with the same NoE

0

1000

2000

3000

4000

5000

6000

Nu
m

be
r o

f E
rro

rs

Results
Number of Errors

Figure 4.7. Results of S-DMF algorithm for temperature dataset

55

Chapter 4: Dynamic Monitoring Frequency for Energy-Efficient Data Collection in IoT

Table 4.3. Results of S-DMF algorithm

a) Results of S-DMF algorithm - temperature

Algorithm ∆max target_accuracy Avg Period DMF SMF Period NoR3 DMF1 NoR SMF2 NoE4 DMF NoE SMF PoE5 DMF PoE SMF

3 177132 146322 45 214 0.01% 0.05%
99.9% 2.478168823

2 177132 219482 45 76 0.01% 0.02%
5 85208 87793 276 869 0.06% 0.20%

99% 5.151664163
3 85208 146322 276 214 0.06% 0.05%
9 45451 48774 3257 3665 0.74% 0.83%

0.5

95% 9.657939319
8 45451 54871 3257 2924 0.74% 0.67%

4 103079 109741 27 157 0.01% 0.04%
99.9% 4.258510463

2 103079 219482 27 26 0.01% 0.01%
10 43767 43897 916 1701 0.21% 0.39%

99% 10.02954281
8 43767 54871 916 978 0.21% 0.22%

0.75

95% 20.49218057 20 21421 21949 7702 7403 1.75% 1.69%

6 74431 73161 29 128 0.01% 0.03%
99.9% 5.897582996

3 74431 146322 29 21 0.01% 0.00%
14 31033 31355 609 1093 0.14% 0.25%

99% 14.14503915
12 31033 36581 609 726 0.14% 0.17%

1

95% 29.15341702 29 15057 15137 5116 5249 1.17% 1.20%

10 45365 43897 40 114 0.01% 0.03%
99.9% 9.676248209

7 45365 62710 40 38 0.01% 0.01%
26 16366 16884 845 1171 0.19% 0.27%

99% 26.82164243
24 16366 18291 845 863 0.19% 0.20%

S-DMF

1.5

95% 49.58353101 50 8853 8780 3740 3909 0.85% 0.89%

b) Results of S-DMF algorithm - humidity

Algorithm ∆max target_accuracy Avg Period DMF SMF Period NoR3 DMF1 NoR SMF2 NoE4 DMF NoE SMF PoE5 DMF PoE SMF

5% 99.9% 1 1 438963 438963 184 184 0.04% 0.04%

4 109307 109741 417 1238 0.09% 0.28%
S-DMF 5% 99% 4.015872725

2 109307 219482 417 482 0.09% 0.11%

12 37855 36581 4165 5713 0.95% 1.30%
5% 95% 11.59590543

10 37855 43897 4165 4246 0.95% 0.97%

c) Results of S-DMF algorithm - air pressure

Algorithm ∆max target_accuracy Avg Period DMF SMF Period NoR3 DMF1 NoR SMF2 NoE4 DMF NoE SMF PoE5 DMF PoE SMF

0.5 99.9% 1.764637 2 248756 219482 432 457 0.10% 0.10%

8 55511 54871 818 1042 0.19% 0.24%
S-DMF 0.5 99% 7.907694

6 55511 73161 818 848 0.19% 0.19%

19 23205 23104 2201 2527 0.50% 0.58%
0.5 95% 18.91679

18 23205 24387 2201 2183 0.50% 0.50%

1Dynamic monitoring frequency 2Static monitoring frequency 3Number of Readings 4Number of Errors 5Percentage of Errors

The results for the S-DMF algorithm for humidity are shown in Table 4.3b. Results for air
pressure are shown in Table 4.3c. As it is visible from tables 4.3b and 4.3c, all conclusions
discussed for temperature are confirmed on both humidity and air pressure datasets.

4.3.2 Machine Learning Algorithm (ML-DMF) Performance

Three ML algorithms, namely logistic regression, random forest and artificial neural
network, are used and their results are discussed in this section. ML is trained on two sets
of features. The first set of features is the same set used for the S-DMF algorithm, i.e., last
period ∆τ j and last reading v(τ j−1) are used as inputs, while algorithm predicts future period
when ∆max is expected. Additional set of features contains information about a day of the
year and an hour of the day. Thus, results are divided into results for algorithms trained on 2

56

Chapter 4: Dynamic Monitoring Frequency for Energy-Efficient Data Collection in IoT

features and algorithms trained on 4 features.
In order to find the best ML algorithm with 2 features, a representative for each of the

three ML algorithm categories is selected:

• Logistic regression - default hyper-parameters are used.

• Random forest - algorithms with different number of trees/estimators=100,500,1000
are considered, but there is no significant difference as seen in Figure 4.8a, thus the
simplest algorithm with 100 trees is selected.

• Artificial neural network - different combinations of batch size, number of nodes and
learning rates are considered. Results for all executed ANNs are shown in Figure 4.8c.
ANN with batch_size = 128, nodes = 100, learning_rate = 0.001 is selected as a
representative since the results do not differ significantly and it is the simplest one.

Table 4.4 shows results of the best ML algorithms in their categories. The results of
ML-DMF algorithms are calculated for three nCC = 1,5,10, as it is shown in Table 4.4.

10000 15000 20000 25000 30000 35000 40000
Number of Readings

10000

20000

30000

40000

50000

60000

70000

Nu
m

be
r o

f E
rro

rs

RF 100 trees
RF 500 trees
RF 1000 trees

(a) Selecting number of trees for RF algorithm
with 2 features

10000 15000 20000 25000 30000 35000 40000
Number of Readings

10000

20000

30000

40000

50000

60000

70000

Nu
m

be
r o

f E
rro

rs

RF 2 features
RF 3 features
RF 4 features

(b) Selecting number of features for RF
algorithm with max 4 features

7500 10000 12500 15000 17500 20000 22500 25000 27500
Number of Readings

10000

20000

30000

40000

50000

60000

70000

Nu
m

be
r o

f E
rro

rs

NN (n=300, bs=512 lr=0.001)
NN (n=300, bs=128 lr=0.001)
NN (n=300, bs=128 lr=0.0001)
NN (n=300, bs=128 lr=0.01)
NN (n=100, bs=128 lr=0.001)
NN (n=100, bs=128 lr=0.0001)
NN (n=100, bs=128 lr=0.01)

(c) Selecting the best ANN algorithm on dataset
with 2 fetaures

n = nodes,bs = batch_size, lr = learning_rate

0 50000 100000 150000 200000 250000 300000 350000
Number of Readings

0

10000

20000

30000

40000

50000

60000

70000

Nu
m

be
r o

f E
rro

rs

NN (n=300, bs=512 lr=0.001)
NN (n=300, bs=128 lr=0.001)
NN (n=100, bs=128 lr=0.001)
NN (n=100, bs=128 lr=0.01)
NN (n=100, bs=128 lr=0.0001)

(d) Selecting the best ANN algorithm on dataset
with 4 features

n = nodes,bs = batch_size, lr = learning_rate

Figure 4.8. Selecting the best parameters of ML algorithms (∆max = 0.5°C)

57

Chapter 4: Dynamic Monitoring Frequency for Energy-Efficient Data Collection in IoT

For temperature dataset (Table 4.4a), maximum deltas ∆max of 0.5°C, 0.75°C, 1°C and 1.5°C
are considered.

For example, in case of an ML algorithm with nCC = 10 for ∆max = 1°C, RF ML-DMF
algorithm collects 9 774 data points (∼ 22%) with NoE = 9 672 (∼ 2.2%). As ML-DMF
collects data with an average period of 44.9 minutes, the results are compared to the results
of SMF with static period of 45 minutes. In case of periodSMF = 45, 9 755 data points
are collected, with NoE = 11 261. That said, SMF that collects the same amount of data
introduces ∼ 2.6% errors. The period of the SMF algorithm with the same NoE is 41
minutes. In case of periodSMF = 41, 10 707 data points are collected, with NoE = 9 350.
Therefore, NoE is similar, but more data is collected with SMF. Similar to S-DMF, ML-DMF
either introduces less errors (when the same amount of data is collected), or collects less data
(when the same number of errors is introduced) compared to SMF.

In order to find representative ML algorithms with 4 features, following algorithms are
selected:

• Logistic regression - only default hyper-parameters are used.

• Random forest - algorithms with different number of trees/estimators=100,500,1000
are considered as well as algorithms with different number of max_ f eatures=2,3,4.
Increase of number of trees does not improve results (as shown in RF with 2 features),
but algorithm provides the best results when max_ f eatures parameter is set to 3.
Therefore, RF with 100 tress and max_ f eatures = 3 is selected (Figure 4.8b).

• Artificial neural network - different combinations of hyper-parameters are tested.
Results of all executed ANNs are shown in Figure 4.8d and ANN with batch_size =

128, nodes = 100 and learning_rate = 0.001 is selected as a representative since it
gives slightly better results than the others.

Overall results of the algorithms with 4 features are not as good as the results of the
algorithms with only two features, as depicted in Figure 4.9. The similar behaviour, when
selecting one or two features gives near optimum results, is documented in [114].

Thus, further analysis is focused on ML-DMFs with 2 features. Comparing LR,
representative RF and representative ANN, results are similar as shown on the logarithmic
scale in Figure 4.10. Complex algorithm such as ANN does not give much better results than
random forest. Furthermore, DMF (S-DMF and ML-DMF) algorithms give better results
than basic SMF.

The best hyper-parameters of temperature ML-DMF algorithms are applied on humidity
and air pressure datasets and results are consistent, as shown in Table 4.4b (humidity) and
4.4c (air pressure).

58

Chapter 4: Dynamic Monitoring Frequency for Energy-Efficient Data Collection in IoT

0 100000 200000 300000 400000
Number of Readings

0

10000

20000

30000

40000

50000

60000

70000

Nu
m

be
r o

f E
rro

rs

LR 2 features
LR 4 features

(a) Linear regression with 2 features vs 4 features

0 100000 200000 300000 400000
Number of Readings

0

10000

20000

30000

40000

50000

60000

70000

Nu
m

be
r o

f E
rro

rs

RF 2 features
RF 4 features

(b) Random forest with 2 features vs 4 features

0 100000 200000 300000 400000
Number of Readings

0

10000

20000

30000

40000

50000

60000

70000

Nu
m

be
r o

f E
rro

rs

NN 2 features
NN 4 features

(c) Artificial neural network with 2 features vs 4
features

Figure 4.9. Comparison of results of ML algorithms with 2 and 4 features (∆max = 0.5°C)

4.3.3 Comparison of DMF vs SMF Algorithms

As demonstrated in the previous section, DMF can be implemented using either S-DMF or
ML-DMF. ML-DMF with default parameters collects less data resulting with more errors,
compared to S-DMF which by default decreases number of errors while collecting more data.
However, amount of collected data can be controlled either by adjusting target_accuracy

59

Chapter 4: Dynamic Monitoring Frequency for Energy-Efficient Data Collection in IoT

parameter for S-DMF or nCC − number o f considered classes for ML-DMF. As it is
shown in Figure 4.11, in order to achieve NoE as low as 276, S-DMF algorithm uses

Table 4.4. Results of ML-DMF algorithms

a) Results of ML-DMF algorithm - temperature

Algorithm ∆max Number of classes (n) Avg Period DMF SMF Period NoR3 DMF1 NoR SMF2 NoE4 DMF NoE SMF PoE5 DMF PoE SMF

1 59.83683206 60 7336 7317 74085 74799 16.88% 17.04%
23 18761 19086 17848 21129 4.07% 4.81%

5 23.39763339
20 18761 21949 17848 17033 4.07% 3.88%
21 20474 20904 15397 18637 3.51% 4.25%

0.5

10 21.44002149
19 20474 23104 15397 15984 3.51% 3.64%

1 59.95124283 60 7322 7317 42279 42441 9.63% 9.67%
42 10407 10452 22353 25585 5.09% 5.83%

5 42.17959066
38 10407 11552 22353 21935 5.09% 5.00%
39 11158 11256 20480 22846 4.67% 5.20%

0.75

10 39.34065245
37 11158 11864 20480 20711 4.67% 4.72%

1 60 60 7317 7317 18297 18297 4.17% 4.17%
5 54.50248324 54 8054 8129 15367 15341 3.50% 3.49%

50 8729 8780 12805 13998 2.92% 3.19%
1

10 50.28789094
48 8729 9146 12805 12985 2.92% 2.96%

1 60 60 7317 7317 5524 5524 1.26% 1.26%
55 7973 7982 4617 4454 1.05% 1.01%

5 55.05618964
54 7973 8129 4617 4634 1.05% 1.06%
49 8887 8959 3473 3773 0.79% 0.86%

L
og

is
tic

R
eg

re
ss

io
n

1.5

10 49.39383369
46 8887 9543 3473 3390 0.79% 0.77%

1 60 60 7317 7317 74799 74799 17.04% 17.04%
24 17950 18291 20732 22982 4.72% 5.24%

5 24.45476323
22 17950 19953 20732 20308 4.72% 4.63%
22 19739 19953 18222 20308 4.15% 4.63%

0.5

10 22.23836061
21 19739 20904 18222 18637 4.15% 4.25%

1 60 60 7317 7317 42441 42441 9.67% 9.67%
40 11073 10975 22057 23478 5.02% 5.35%

5 39.64264427
38 11073 11552 22057 21935 5.02% 5.00%
36 12065 12194 19446 19704 4.43% 4.49%

0.75

10 36.38317447
35 12065 12542 19446 19472 4.43% 4.44%

1 60 60 7317 7317 18297 18297 4.17% 4.17%
49 9025 8959 11399 13298 2.60% 3.03%

5 48.63855956
45 9025 9755 11399 11261 2.60% 2.57%
45 9774 9755 9672 11261 2.20% 2.57%

1

10 44.91129527
41 9774 10707 9672 9350 2.20% 2.13%

1 60 60 7317 7317 5524 5524 1.26% 1.26%
50 8833 8780 3730 3909 0.85% 0.89%

5 49.69579984
48 8833 9146 3730 3764 0.85% 0.86%
45 9751 9755 2943 3224 0.67% 0.73%

R
an

do
m

Fo
re

st

1.5

10 45.017229
42 9751 10452 2943 2944 0.67% 0.67%

1 60 60 7317 7317 74799 74799 17.04% 17.04%
25 17690 17559 20222 24161 4.61% 5.50%

5 24.81418881
22 17690 19953 20222 20308 4.61% 4.63%
23 19490 19086 17342 21129 3.95% 4.81%

0.5

10 22.52247306
20 19490 21949 17342 17033 3.95% 3.88%

1 60 60 7317 7317 42441 42441 9.67% 9.67%
40 11088 10975 21284 23478 4.85% 5.35%

5 39.58901515
37 11088 11864 21284 20711 4.85% 4.72%
36 12063 12194 18050 19704 4.11% 4.49%

0.75

10 36.38920667
33 12063 13302 18050 17920 4.11% 4.08%

1 60 60 7317 7317 18297 18297 4.17% 4.17%
53 8309 8283 13303 15070 3.03% 3.43%

5 52.82982308
49 8309 8959 13303 13298 3.03% 3.03%
46 9445 9543 11376 11800 2.59% 2.69%

1

10 46.47570143
45 9445 9755 11376 11261 2.59% 2.57%

1 60 60 7317 7317 5524 5524 1.26% 1.26%
52 8440 8442 3685 4260 0.84% 0.97%

5 52.00983412
47 8440 9340 3685 3639 0.84% 0.83%
47 9337 9340 2856 3639 0.65% 0.83%

N
eu

ra
lN

et
w

or
ks

1.5

10 47.0132805
43 9337 10209 2856 2918 0.65% 0.66%

60

Chapter 4: Dynamic Monitoring Frequency for Energy-Efficient Data Collection in IoT

b) Results of ML-DMF algorithms - humidity

Algorithm ∆max Number of classes (n) Avg Period DMF SMF Period NoR3 DMF1 NoR SMF2 NoE4 DMF NoE SMF PoE5 DMF PoE SMF

1 59.8205233 60 7338 7317 37004 37826 8.43% 8.62%
21 20562 20903 9630 11735 2.19% 2.67%

5 21.34826379
18 20562 24387 9630 9661 2.19% 2.20%
18 25054 24387 6477 9661 1.48% 2.20%L

og
is

tic
R

eg
re

ss
io

n

5

10 17.52067534
13 25054 33767 6477 6366 1.48% 1.45%

1 60 60 7317 7317 37826 37826 8.62% 8.62%
26 16932 16884 14450 15391 3.29% 3.51%

5 25.92505315
24 16932 18291 14450 14204 3.29% 3.24%
23 19302 19086 12205 13439 2.78% 3.06%

R
an

do
m

Fo
re

st

5

10 22.74184022
22 19302 19953 12205 12149 2.78% 2.77%

1 60 60 7317 7317 37826 37826 8.62% 8.62%
26 17164 16884 14093 15391 3.21% 3.51%

5 25.57463295
24 17164 18291 14093 14204 3.21% 3.24%
22 20390 19953 10831 12149 2.47% 2.77%

N
eu

ra
lN

et
w

or
ks

5

10 21.52834723
20 20390 21949 10831 10960 2.47% 2.50%

c) Results of ML-DMF algorithms - air pressure

Algorithm ∆max Number of classes (n) Avg Period DMF SMF Period NoR3 DMF1 NoR SMF2 NoE4 DMF NoE SMF PoE5 DMF PoE SMF

1 60 60 7317 7317 20847 20847 4.75% 4.75%
54 8130 8129 16064 16653 3.66% 3.79%

5 53.99298893
53 8130 8283 16064 15574 3.66% 3.55%
50 8784 8780 13589 14287 3.10% 3.25%L

og
is

tic
R

eg
re

ss
io

n

0.5

10 49.97301913
49 8784 8959 13589 13445 3.10% 3.06%

1 60 60 7317 7317 20847 20847 4.75% 4.75%
50 8785 8780 12367 14287 2.82% 3.25%

5 49.96733068
47 8785 9340 12367 12554 2.82% 2.86%
47 9418 9340 10264 12554 2.34% 2.86%

R
an

do
m

Fo
re

st

0.5

10 46.60894033
43 9418 10209 10264 10425 2.34% 2.37%

1 60 60 7317 7317 20847 20847 4.75% 4.75%
51 8533 8608 13299 14994 3.03% 3.42%

5 51.44298605
49 8533 8959 13299 13445 3.03% 3.06%
44 10019 9977 9456 10852 2.15% 2.47%

N
eu

ra
lN

et
w

or
ks

0.5

10 43.8130552
41 10019 10707 9456 9397 2.15% 2.14%

1Dynamic monitoring frequency 2Static monitoring frequency 3Number of Readings 4Number of Errors 5Percentage of Errors

target_accuracy = 99%. ML algorithm with similar NoE has to use ncc = 55. The
problem with ncc = 55 is that the highest period such algorithm can select is 5 minutes
(periodmax = 60−ncc = 5). In comparison, S-DMF algorithm can select any period in range
of 1-60 depending on parameters. Discussed S-DMF with target_accuracy = 99% can reach
periods up to 22 minutes, but periodmax = 22 is known only after algorithm is executed.

To summarize, both S-DMF and ML-DMF give better results than traditional SMF
(Figure 4.10). ML-DMF works better when the emphasis is on lowering NoR, while S-DMF
provides better results when tolerance to errors is low.

4.4 Implications on Energy Efficiency and Processing
Complexity

It is shown that statistical dynamic monitoring frequency (S-DMF) as well as machine
learning DMF (ML-DMF) can successfully find dynamic periods. In this section, we first
show how DMFs may reduce energy consumption while preserving accuracy. Secondly, the
impact of the training dataset size to the algorithms accuracy is analysed. Lastly, we discuss
processing complexity of S-DMF and ML-DMF algorithms.

61

Chapter 4: Dynamic Monitoring Frequency for Energy-Efficient Data Collection in IoT

104
105

Number of Readings

102

103

104

105

Nu
m

be
r o

f E
rro

rs

SMF
Statistical DMF
LR DMF
RF DMF
NN DMF

(a) Results for temperature dataset,
∆max = 0.5°C

104
105

Number of Readings

101

102

103

104

Nu
m

be
r o

f E
rro

rs

SMF
Statistical DMF
LR DMF
RF DMF
NN DMF

(b) Results for temperature dataset,
∆max = 0.75°C

104
105

Number of Readings

101

102

103

104

Nu
m

be
r o

f E
rro

rs

SMF
Statistical DMF
LR DMF
RF DMF
NN DMF

(c) Results for temperature dataset,
∆max = 1°C

104
105

Number of Readings

101

102

103

Nu
m

be
r o

f E
rro

rs

SMF
Statistical DMF
LR DMF
RF DMF
NN DMF

(d) Results for temperature dataset,
∆max = 1.5°C

104
105

Number of Readings

103

104

Nu
m

be
r o

f E
rro

rs

SMF
Statistical DMF
LR DMF
RF DMF
NN DMF

(e) Results for humidity dataset,
∆max = 5%

104
105

Number of Readings

103

104

Nu
m

be
r o

f E
rro

rs

SMF
Statistical DMF
LR DMF
RF DMF
NN DMF

(f) Results for air pressure dataset,
∆max = 0.5hPa

Figure 4.10. Overall results

62

Chapter 4: Dynamic Monitoring Frequency for Energy-Efficient Data Collection in IoT

=0.5, n=5;
TA=75%; SP=25

=0.5, n=50;
TA=95%; SP=10

=0.5, n=55;
TA=99%; SP=6

=1, n=5;
TA~60%; SP=52

=1, n=30;
TA=95%; SP=29

=1, n~47;
TA=99%; SP=14

Algorithm parameters
 (= max; TA=target_accuracy; SP=Static monitoring frequency Period)

0

20000

40000

60000

80000

100000

Nu
m

be
r o

f R
ea

di
ng

s
LR DMF
RF DMF
NN DMF
statistical
DMF
SMF

0

5000

10000

15000

20000

25000

30000

35000

Nu
m

be
r o

f E
rro

rs

Results

Number of Errors

Figure 4.11. Comparison of S-DMF and ML-DMF results with SMF

4.4.1 Energy Efficiency

In given use cases, when monitoring temperature, humidity and pressure, existing solution
collects data every minute. Since monitored phenomena may not change that fast, dataset
can be full of redundant data. Temperature dataset used in this research consists of 1 451 120
data points. Since it contains no difference between consecutive values, i.e, ∆v(ti) = 0 for 1
128 297 readings, ∼ 22% of collected values are redundant. In terms of an air temperature
considered for this use case, the change of 0.5°C or 1°C may be declared irrelevant as well.
Thus, more than 75% collected data points can be omitted (Figure 4.5). Putting a sensor to
sleep mode between relevant readings may result with 4 times longer battery lifetime.

With proposed solution, S-DMF for ∆max = 0.5°C collects only 85 208 data points
with 276 errors. Compared to SMF which has the same NoE and collects 146 322 data
points, S-DMF collects ∼ 40% less data points. Thus, battery lifetime is increased 2.5
times. Random forest ML-DMF, for ∆max = 0.5°C collects 17 950 data points with 20 732
errors. In this case, NoE is higher compared to the previously discussed S-DMF, but battery
lifetime is increased 5 times. When compared to the baseline SMF algorithm, random forest
ML-DMF collects only ∼ 4% of data points with equivalent ∼ 4.7% errors as the baseline
SMF. In non-critical systems, where error rate of ∼ 4.7% is acceptable, ML-DMF can result
in significant battery savings. Given that ML-DMF is active only ∼ 4% of SMF time, the
same battery could support the operation time that is approximately 1/0.04 = 25 longer
than the baseline SMF time. For example, 6 months of battery lifetime with baseline SMF
would result in over 12 years of battery lifetime with ML-DMF, if one can tolerate somewhat

63

Chapter 4: Dynamic Monitoring Frequency for Energy-Efficient Data Collection in IoT

increase in error rate (∼ 4.7% in this case).
That said, when using DMF algorithms it is important to be aware how do ∆max,

target_accuracy and nCC − number o f considered classes affect both energy consumption
and accuracy. Therefore, above mentioned parameters should be selected in dependence
with specific use case. To sum up, DMF algorithm reduces energy consumption, since only
relevant data is collected and sensor sleeps in the meanwhile, while preserving defined level
of accuracy.

Comparing DMF algorithm with filtering, where data reduction is performed after data
is collected, filtering algorithm will be 100% accurate, as optimal baseline case described in
section 4.1. However, the problem with filtering is that a sensor has to be continuously online
collecting data with a predefined period. After collection, data is compared and irrelevant
data is ignored. However, when combined with DMF, filtering can retain accuracy while
additionally reducing the amount of data circulating through the network.

4.4.2 Optimizing the Size of the Training Dataset

Since data is collected every minute, total 2-year training dataset contains 1 051 200 readings.
Two years is a very long period to collect data before training a model. Thus, shorter data
collection periods are investigated, namely periods of 3 hours, 1 day, 1 week, 1 month, 6
months and 1 year. For each training period, an algorithm is prepared for 30 randomly
selected signals, as shown in Figures 4.12 - 4.17.

Red dashdotted line in Figures 4.12 - 4.17 depicts results (NoR and NoE) on the
logarithmic scale for different periods. Training with 3 hour period is unstable and
results with high dispersion of the results; in other words the results of 30 executions are
inconsistent. However, using 2-year or 1-year data is unnecessary since similar results can
be achieved using 6 months period. For most use cases, periods in range of 1 day to 6 months
can be selected. A period should be selected depending on the use case and the amount of
errors that can be tolerated. In most situations, an algorithm can be created on a 1-day or a
1-week dataset, and updated with chunks of constantly incoming data as time passes.

Green dotted line in Figures 4.12 - 4.17 depicts the dispersion of the results for 30 random
signals for logistic regression algorithm. Blue dashdotted line in Figures 4.12 - 4.17 depicts
the results dispersion for random forest algorithm, while orange dashed line shows the results
for artificial neural network algorithm. For all three ML-DMF algorithms, just like for
S-DMF, 6-month period is long enough to reach stability and accuracy as the algorithm
that is trained on 2-year dataset for the most use cases. However, for some use cases, 1-week
or even 1-day period is good enough to start data collection using DMF algorithm. The
algorithm can be later updated with larger dataset.

64

Chapter 4: Dynamic Monitoring Frequency for Energy-Efficient Data Collection in IoT

104 105

Number of Readings

102

103

104

105

Nu
m

be
r o

f E
rro

rs

SMF
S-DMF
3h S-DMF
LR DMF
3h LR DMF
RF DMF
3h RF DMF
NN DMF
3h NN DMF

Figure 4.12. 3 hours S-DMF and ML DMFs with ∆max = 0.5°C; target_accuracy = 99%;
ncc = 5

104 105

Number of Readings

102

103

104

105

Nu
m

be
r o

f E
rro

rs

SMF
S-DMF
1day S-DMF
LR DMF
1day LR DMF
RF DMF
1day RF DMF
NN DMF
1day NN DMF

Figure 4.13. 1 day S-DMF and ML DMFs with ∆max = 0.5°C; target_accuracy = 99%;
ncc = 5

104 105

Number of Readings

102

103

104

105

Nu
m

be
r o

f E
rro

rs

SMF
S-DMF
1week S-DMF
LR DMF
1week LR DMF
RF DMF
1week RF DMF
NN DMF
1week NN DMF

Figure 4.14. 1 week S-DMF and ML DMFs with ∆max = 0.5°C; target_accuracy = 99%;
ncc = 5

65

Chapter 4: Dynamic Monitoring Frequency for Energy-Efficient Data Collection in IoT

104 105

Number of Readings

102

103

104

105

Nu
m

be
r o

f E
rro

rs

SMF
S-DMF
1month S-DMF
LR DMF
1month LR DMF
RF DMF
1month RF DMF
NN DMF
1month NN DMF

Figure 4.15. 1 month S-DMF and ML DMFs with ∆max = 0.5°C; target_accuracy = 99%;
ncc = 5

104 105

Number of Readings

102

103

104

105

Nu
m

be
r o

f E
rro

rs

SMF
S-DMF
6months S-DMF
LR DMF
6months LR DMF
RF DMF
6months RF DMF
NN DMF
6months NN DMF

Figure 4.16. 6 months S-DMF and ML DMFs with ∆max = 0.5°C; target_accuracy = 99%;
ncc = 5

104 105

Number of Readings

102

103

104

105

Nu
m

be
r o

f E
rro

rs

SMF
S-DMF
1year S-DMF
LR DMF
1year LR DMF
RF DMF
1year RF DMF
NN DMF
1year NN DMF

Figure 4.17. 1 year S-DMF and ML DMFs with ∆max = 0.5°C; target_accuracy = 99%;
ncc = 5

66

Chapter 4: Dynamic Monitoring Frequency for Energy-Efficient Data Collection in IoT

4.4.3 Processing Complexity

In terms of complexity, S-DMF algorithm is more complex than ML algorithms, especially
during the training phase due to a large table of percentile values that has to be created. Table
size depends on the period (period2). For considered 60-minute period, the size of the table
is 602. Generated table is applicable for only one percentile, while every new percentile
requires additional table. Once a table is generated it can be easily used, but in a case of
large periods its size may be a problem for battery-powered IoT sensors.

In comparison, a complexity of ML algorithms does not depend on a period size, nor on
nCC. Logistic regression and random forest algorithms are the least complex and least time
consuming solutions, especially during the training phase since they learn fastest. However,
artificial neural network is the most complex and time consuming ML algorithm due to its
complex mathematical background [48].

We have trained ML-DMFs with 2 and 4 features. As more features are added to
ML-DMF, the more complex the algorithm becomes. However, our initial hypothesis
was that more data results with better accuracy, thus increase in complexity is acceptable
compromise. Nevertheless, results show that ML-DMFs with 4 features result with lower
accuracy when compared to ML-DMFs with 2 features. Reason for such a behaviour is due
to the selected features, which probably forced the ML algorithms to overfit, i.e., making
them more biased towards seasonal changes rather then current trend.

4.5 Summary

In this research, we propose a dynamic monitoring frequency (DMF) algorithm that aims at
collecting data only when sensor readings change by more than a predefined value between
consecutive readings. Thus, a sensor is turned on only when a change in value of monitored
phenomenon exceeds a predefined threshold. Two algorithms for reading sensor data using
dynamic monitoring frequency are proposed and systematically analysed. The first algorithm
is based on a statistical distribution of changes between consecutive readings on historically
collected sensor data. The second algorithm is based on a machine learning (ML) that
predicts future periods when the acceptable change in sensor data is expected.

Results show that the machine learning DMF gives better results for lower frequencies,
while the statistical DMF algorithm gives better results for higher frequencies. The biggest
advantage of the statistical DMF is that, compared to machine learning DMF, it does not limit
the range of future periods. Comparing DMF algorithms with static monitoring frequency
(SMF) algorithm that collects the same amount of data, DMF exhibits up to ∼ 80% less
errors. Comparing DMF and SMF algorithms with approximately the same amount of errors,
DMF collects up to ∼ 40% less data.

Collection of ∼ 40% less data means that a sensor may sleep ∼ 40% longer and thus

67

Chapter 4: Dynamic Monitoring Frequency for Energy-Efficient Data Collection in IoT

save energy. Also, it is shown that shorter datasets can result with significant accuracy, i.e.,
using training dataset of 1 or 6 months instead of using full dataset that contains 2 years
data. Lastly, processing complexity of both, statistical DMF and machine learning DMF
algorithms are compared. Important highlight is that the complexity of machine learning
DMF algorithms does not depend on a period length, while statistical DMF complexity has
quadratic dependence to the length of period.

Next step in this field is the implementation of an online DMF algorithm. Such an
algorithm would work in two phases. In first phase it collects data in very short periods and
uses collected data for self-training. The second phase starts when significant accuracy is
reached. During the second phase, the algorithm would apply gained knowledge and predict
future periods. These two phases can interchange and algorithm can update its knowledge
periodically.

68

5 Predicting Final Value from Part of Transient for
Sensors with Preheating

The second part of the research [115] focuses on sensors that require preheating before being
able to gather environmental data. Therefore, such sensors cannot collect data at the exact
moment they are turned on but have to preheat first. Inspired by research by Jia et al. [34],
we will analyse this topic on the use case of gas sensors. In the context of gas sensors, it is
important to detect hazardous gases on time [116] using sensors with low power [117] and
low cost [118], due to the rising scale of IoT.

When a circuit is turned on and off, voltages and currents take time to stabilize in order to
obtain readings of the actual gas concentration. A momentary variation in the current or the
voltage during this preheating transition is called a transient, only after which an actual value
can be read. However, transients (especially in low-cost sensors) can take minutes, which
consumes significant amount of energy from a battery powered sensors. Therefore, instead
of waiting for the sensors to fully preheat, only parts of the transient can be collected. As Jia
et al. show in their research [34] energy can be saved if gas values are predicted from a part
of the transient.

In this research, instead of a high-precision sensor as used in [34], low-cost MQ-2 [50],
MQ-5 [51] and MQ-6 [52] gas sensors are used. The goal is to investigate if an actual
gas concentration can be predicted from the transient of a low-cost sensor and thus achieve
low-cost but reliable IoT gas sensor network. On one hand, online period of the sensors
must be long enough to provide a sufficient amount of data to distinguish one gas level from
another. On the other hand, it should be short enough for the prediction process to be energy
efficient. The resulting approach gives a minimised online period without significantly
reduced accuracy.

Long short-term memory (LSTM) neural network (NN) is used to predict the actual
value from the transient. LSTM network is suitable for predicting time series data, as it
can distinguish and eliminate irrelevant and redundant data from the relevant one. In order
to prepare LSTM algorithm that predicts actual values from the transients, data is collected
with MQ-2 gas sensor. Collected data is normalized in the range between 0 and 1. Three-fold
validation method is used to split the data and train LSTM neural network. Finally, algorithm
parameters and the entire approach prepared for MQ-2 sensor are later evaluated on two other
MQ sensors, namely MQ-5 and MQ-6.

69

Chapter 5: Predicting final value from part of transient for sensors with preheating

Results show that MQ-2 gas sensor can predict values with RMSE 0.05938. When using
parameters that provide the best results for MQ-2 gas sensor, RMSE of MQ-5 sensor is as
low as 0.07002, but it is slightly higher for MQ-6 with a value of 0.1293. With high accuracy
this solution can save up to 85% energy compared to a system where sensors are constantly
online, and more than 50% compared to a system where sensors heat up to collect actual gas
concentrations instead of a part of the transient.

This chapter is divided into six sections. The introduction is followed by section 5.1,
which describes the preliminary analysis and methodology used in this research. Section
5.2 explains our implementation and results, while section 5.3 gives the evaluation of our
approach on MQ-5 and MQ-6 sensors with discussion. Last section concludes this chapter.

5.1 Gas Sensor Characterization

In order to collect the actual value representing the gas concentration, a gas sensor needs to
heat up. During this preheat time a voltage needs to stabilize, where a set of unstable values
during this period are referred to as a transient. Once sensor readings are stabilized, the

Transient

Transient

Part of Transient

Stabilize

Preheat time Read Read

Actual value

V

time

time

time

Actual value

Actual value

Preheat time

Sleep

Read Read

Read Read

Sleep

Predict Predict

V

V

Sleep

Online

Online period

Online

Online

Sleep period

a)

b)

c)

Preheat time

Figure 5.1. Three scenarios for sensors setup, namely a) always online, b) with full preheat
and sleep period and c) with prediction based on a partial preheat and sleep period

70

Chapter 5: Predicting final value from part of transient for sensors with preheating

sensor can periodically read data while continuously being online as shown in Figure 5.1a.
In case the sensor is put to sleep to save energy, it has to preheat after every sleep and then
read the last value of the transient, i.e., the actual value of gas concentration. This scenario is
shown in Figure 5.1b. Our approach is depicted in Figure 5.1c, where a sensor reads multiple
values from the first part of the transient, while the actual value is estimated from that part
using machine learning. This way, the sensor will have a longer sleep period, while more
values are read in its short online period.

5.1.1 Environment Setup

We utilize low-cost MQ gas sensors, more specifically MQ-2 for defining our methodology.
MQ-2 sensor detects multiple hazardous gases, such as Liquefied Petroleum Gas (LPG),
methane (CH4), Alcohol, Smoke and Propane. Since the goal is to predict the actual value
from the transient and turn the sensor off, two sensors are used, namely a test sensor for
predicting the actual values and a control sensor for the ground truth. Furthermore, the MQ
sensors were exposed to a variety of gas concentrations.

The two sensors are connected to an Arduino Uno board that collects actual gas
concentration values and then sends them via serial communications to the computer as
shown in Figure 5.2. The control sensor MQ-2(1) is always online without a sleep period.

USBPWR

RESET
3.3V
5V
GND
GND
VIN

A0
A1
A2
A3
A4
A5

AREF
GND

13
12

~11
~10
~9

8

7
~6
~5

4
~3

2
Tx> 1
Rx< 0

PO
W

ER
AN

ALO
G

D
IG

IT
AL

 (P
W

M
~)

RESET

A
rduino U

N
O

 R
3

ICSP

 RTC
SCL
SDA
VCC
GND

 MQ-2(2)
Dout
Aout
GND
VCC

 MQ-2(1)
Dout
Aout
GND
VCC

SCL (I2C)

SDA (I2C)

IRFZ44N

G

D

S

GND

USB (PC)

DS3231
3V

+

5V
+

GND

Test sensor

Control sensor

Figure 5.2. Setup scheme with the test and control sensors, and real-time clock for turning
on and off the test sensor

71

Chapter 5: Predicting final value from part of transient for sensors with preheating

The test sensor MQ-2(2) has a predefined sleep period after which it wakes up upon receiving
a signal from the real-time clock (RTC) DS3231 [119]. In order to turn off the test sensor
completely during the sleep period, a power MOSFET IRFZ44N [120] is used. Finally, to
reduce external influences the entire setup, depicted in Figure 5.2, is placed in a sealed plastic
container.

The data is collected with both sensors to find their correlation as they do not have the
same nominal readings in the same environment. Therefore, linear regression is used to
correlate their readings. The control sensor is left to collect the data continuously, while
the test sensor collects only transients. The expected values of the test sensor are calculated
from the known correlation with the control sensor. Finally, since MQ-2 sensors collect the
data in a range of 0V to 5V, the data is normalized on a scale between 0 and 1. The highest
value obtained for the gas during the experiments is 0.8 (4V) due to the specifics of MQ-2
sensors [50].

5.1.2 Online Period Characteristics

Prior to collecting a dataset used for building the LSTM prediction model, a preliminary
analysis is performed in order to characterize behaviour of the transient. During online
periods the sensor is warming up, while during sleep periods it is cooling down. That said,
transients for different online-sleep ratios in atmosphere without gas are compared in Figure
5.3, where online periods of 10, 15, 20, 30, 40 and 60 seconds are considered, in combination
with 60 and 120 seconds of sleep period, respectively.

As depicted in Figure 5.3, MQ-2 sensor transients in the environment without gas
reach their maximum in first 15 seconds and the actual gas concentration (ground truth)

0 20 40 60 80 100
Time(s)

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d
se

ns
or

 re
ad

in
gs

Actual value
O60_S60
O40_S60
O30_S60
O20_S60
O15_S60
O10_S60
O60_S120
O40_S120
O30_S120
O20_S120
O15_S120
O10_S120

Figure 5.3. Transient for different online (O) – sleep (S) ratios (without gas)

72

Chapter 5: Predicting final value from part of transient for sensors with preheating

in approximately 40 seconds. Regardless of the sleep periods, the readings stabilize at the
actual gas level within those 40 seconds, where both sleep and online period affect only the
maximum value, which is then regulated with its climbing and falling slopes to again reach
their actual values after 40 seconds. Consequently, we select an online period less than 40
seconds in order to achieve savings with LSTM predictions. However, further experiments
show that periods shorter than 20 seconds have high variance. As seen from Figure 5.4,
in case of 10 second period consecutive readings result with inconsistent transients during
longer runs, while the actual gas concentration remains the same. Thus, 20 seconds for the
online period is selected, which shows stable readings during longer periods as depicted in
Figure 5.4 where multiple continues readings show correlation above 95%.

0.0 2.5 5.0 7.5 10.0
0.50

0.75

1.00

1.25
Online 10 - Sleep 60

0.0 2.5 5.0 7.5 10.0

0.5

1.0

1.5
Online 10 - Sleep 120

0 5 10 15 20
0.5

0.6

0.7

Online 20 - Sleep 60

0 5 10 15 20
0.50

0.75

1.00

1.25
Online 20 - Sleep 120

Figure 5.4. Correlation of transients in case of different Online/Sleep ratios

5.1.3 Sleep Period Characteristics

Further data collection is performed with 20 seconds online period and again 60 and 120
seconds sleep period, as well as with different gas levels inside the sealed container. Figure
5.5 shows transients for 5 different gas levels. The higher the gas concentration is, the higher
the transient maximum is. However, transients at highest gas concentrations exhibit different
patterns than the ones in lower gas concentrations, or without the gas at all. In the first 20
seconds the value jumps to 0.2 (1V), after which it starts to rapidly increase for the next 1,5
minutes, as seen in Figure 5.6. However, the initial jump is still significant enough to be
distinguishable from lower gas levels, thus the online period of 20 seconds remains valid.

As depicted in Figure 5.6, MQ-2 sensor requires over 120 seconds to reach the actual

73

Chapter 5: Predicting final value from part of transient for sensors with preheating

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time(s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

No
rm

al
ize

d
se

ns
or

 re
ad

in
gs

Very Low gas concentration
Low gas concentration
Medium gas concentration
Higher gas concentration
High gas concentration

Figure 5.5. Transients in different gas levels

value in the environment with high gas concentrations. Consequently, any use of sleep
functionality in such environment would require a preheat time of more than 120 seconds
in order to read correct values. Therefore, we select 120 seconds for our sleep period along
with 20 seconds for the online period, and thus get gas sensor readings approximately every
140 seconds.

0 20 40 60 80 100 120 140 160
Time(s)

0.1

0.2

0.3

0.4

0.5

0.6

No
rm

al
ize

d
se

ns
or

 re
ad

in
gs

High gas concentration Transient
High gas concentration
Low gas concentration Transient
Low gas concentration

Figure 5.6. Low vs High gas level transients

74

Chapter 5: Predicting final value from part of transient for sensors with preheating

5.1.4 Collection of Transients

In order to collect a dataset comprising a set of transients, previously defined online-sleep
period is used, along with different gas concentrations. For 20 seconds online period, data
is collected 10 times in a second (i.e., every 100ms) resulting with 186 values in a single
transient (186 instead 200 since every reading takes ∼ 0.15 milliseconds). Total dataset
contains 381 transients with their matching actual values, hence resulting in total of 70 866
values. Entire dataset is visualized in Figure 5.7.

0 50 100 150 200 250 300 350
Ordinal number of input

0.00

0.25

0.50

0.75

G
as

 C
on

ce
nt

ra
tio

n

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Gas concentration classes

0

50

100

150

N
um

be
r

of
 tr

an
si

en
ts

Figure 5.7. Actual values for 381 transients (top figure) grouped in 8 classes (bottom figure)

Furthermore, gas concentrations are classified in eight classes listed in Table 5.1, where
the entire dataset C comprises all classes, namely C = c0,c1,c2,c3,c4,c5,c6,c7. It is
important to highlight that class c5 contains the most elements since 0.5 value is recognised
as a border between environments with and without significant gas concentration. Therefore,
the classification is used for even stratification of transients when applying three-fold
validation approach during LSTM model training and testing, i.e., to even out presence of all
classes in training as well as in the test dataset.

75

Chapter 5: Predicting final value from part of transient for sensors with preheating

Table 5.1. Gas concentration classes

Class name Gas concentration [0-1]

c0 0−0.1
c1 0.1−0.2
c2 0.2−0.3
c3 0.3−0.4
c4 0.4−0.5
c5 0.5−0.6
c6 0.6−0.7
c7 0.7−0.8

5.2 LSTM Model Training and Validation

In this section, we explain the configuration and usage of LSTM neural network for
predicting readings of MQ-2 gas sensor based on its initial transient. LSTM algorithm and
the dataset stratification and diversification are explained. Afterwards, LSTM parameters are
selected based on the best model accuracy and used for selecting the read frequency for input
data as well as for testing models performance with scarce data.

5.2.1 LSTM Algorithm

LSTM is suitable for our application as the transient represents time series data. While
LSTM neural network handles time series data very well, it is still important to carefully
select parameters, as well as a dataset. In order to find the best parameters, different
combinations of number of neurons, learning rates and epochs are tested. More neurons
can help in case of underfitting, reducing number of epochs helps in case of overfitting,
while smaller learning rate helps to eliminate exploding gradients. LSTM network used in
this research contains 1 LSTM layer, Relu activation function, Adam optimizer and MSE
loss calculation with fixed seed (123). Fixed seed is used in order to be able to reproduce the
results. Different combinations of neurons, learning rates and epochs listed in Table 5.2 are
used in order to obtain the best results.

5.2.2 Dataset Stratification and Diversification

To train LSTM algorithm for MQ-2 gas sensor 304 transients out of 381 from the dataset
shown in the previous section are used. This leaves 77 transients for the test set, which is
around 20% of the whole dataset. The training set is further split using stratified three-fold
algorithm, which selects one third of transients from each class to validate LSTM algorithm.

76

Chapter 5: Predicting final value from part of transient for sensors with preheating

Table 5.2. Parameter combinations for building LSTM

Parameter Values

Number of neurons 20, 50, 80
Number of Epochs 250, 500, 750, 1000
Learning Rate 0.001, 0.0001, 0.00001

In order to diversify the training set and reduce data transmission, other combinations are
considered as well besides 186 value long transient:

1. Analysing all 186 values collected during 20 seconds (∼ 9 readings per second)

2. Analysing 20 values collected during 20 seconds

(a) Data collected every second

(b) Data from the first 20 seconds, 20 logarithmically spaced readings

(c) Data from the first 20 seconds, 20 exponentially spaced readings

3. Analysing only 10 values collected during 20 seconds (the sensor still has to be online
for 20 seconds, otherwise it won’t heat up enough). Here we include five combinations:

(a) Data from the first 20 seconds, collected every two seconds

(b) Data from the first 10 seconds (collected every second)

(c) Data from the first second (collected every 100ms)

(d) Data from the first 20 seconds, 10 logarithmically spaced readings

(e) Data from the first 20 seconds, 10 exponentially spaced readings

Furthermore, to test how the best of these solutions deal with scarce data, i.e., missing entire
classes of readings, the algorithm is executed on the training set without data from every
class (c0−c7), as defined in Table 5.3. Finally, the results are discussed and compared using
Root Mean Square Error (RMSE) [121]. Since RMSE reflects the distance between real and
predicted values it is used to evaluate the performance of predictions, i.e., smaller RMSE
implies higher prediction accuracy. Equation 5.1 defines a formula for RMSE, where e is the
error between the predicted and the actual value.

RMSE =

√
1
n

n

∑
i=1

e2 (5.1)

77

Chapter 5: Predicting final value from part of transient for sensors with preheating

Table 5.3. Sets of datasets with included/excluded classes

Dataset Included/excluded classes

C \{c0} [c0][c1][c2][c3][c4][c5][c6][c7]

C \{c1} [c0][c1][c2][c3][c4][c5][c6][c7]

C \{c2} [c0][c1][c2][c3][c4][c5][c6][c7]

C \{c3} [c0][c1][c2][c3][c4][c5][c6][c7]

C \{c4} [c0][c1][c2][c3][c4][c5][c6][c7]

C \{c5} [c0][c1][c2][c3][c4][c5][c6][c7]

C \{c6} [c0][c1][c2][c3][c4][c5][c6][c7]

C \{c7} [c0][c1][c2][c3][c4][c5][c6][c7]

C \{c0,c2,c3,c4,c6} [c0][c1][c2][c3][c4][c5][c6][c7]

C \{c0,c2,c3,c4,c5} [c0][c1][c2][c3][c4][c5][c6][c7]

5.2.3 LSTM Parameters Selection

As described in the previous section, LSTM is created based on gas concentration collected
by MQ-2 sensor. Table 5.4 shows the results of different combinations of cell numbers,
epochs and learning rates with their respective RMSE. Some large updates to weights during
training cause a numerical overflow or underflow often referred to as exploding gradients,
which results with NaN values for some combination of parameters, especially in case of
larger learning rate. Nevertheless, 50 cells, 500 epochs and the learning rate of 0,0001 gives
the best performance during training. This set of parameters also outperforms others when
applied on the test set by giving even better results, hence confirming that it is not either
overfit or underfit.

Figure 5.8b shows a histogram of errors for 186 values long transients for MQ-2 sensor on
the test set. Most errors are below 5% although RMSE is 0.06829. There are few errors above
30%, however as visible from Figure 5.8a those errors occur for high gas concentrations.
Since predicted values are above 0.5 (2.5V) they are still classified as dangerous gas level.

5.2.4 Frequency Selection for Input Data

In further analysis, we use the algorithm configuration that gives the best results for 186
values long transient and test it on a smaller number of transient values. Results in Table 5.5
show that more data is not necessarily better than less data. Despite expectations that a larger
transient will result in better predictions, the best predictions are in the case when values are
evenly sampled at 1Hz. If the algorithm learns from the data that contains large number of
features, it often overfits the noise and does not work well on a real world data. Furthermore,
logarithmically spaced data yields notable results when trained either on 10 or 20 values

78

Chapter 5: Predicting final value from part of transient for sensors with preheating

Table 5.4. Selecting optimal parameters for LSTM NN

Cells Epochs Learning rate Train set RMSE Test set RMSE

20 250 0.001 0.1748 0.1557

20 500 0.001 NaN NaN

20 750 0.001 0.2103 0.2505

20 1000 0.001 NaN NaN

20 250 0.0001 0.1687 0.1599

20 500 0.0001 0.1116 0.0872

20 750 0.0001 0.1083 0.0919

20 1000 0.0001 0.1060 0.0881

20 250 0.00001 0.4042 0.4007

20 500 0.00001 0.2889 0.2890

20 750 0.00001 0.2162 0.2239

20 1000 0.00001 0.1945 0.1885

50 250 0.001 NaN NaN

50 500 0.001 NaN NaN

50 750 0.001 NaN NaN

50 1000 0.001 NaN NaN

50 250 0.0001 0.1217 0.0992

50 500 0.0001 0.0926 0.0683
50 750 0.0001 NaN NaN

50 1000 0.0001 0.1496 0.1610

50 250 0.00001 0.2906 0.2923

50 500 0.00001 0.2011 0.2028

50 750 0.00001 0.1682 0.1678

50 1000 0.00001 0.1421 0.1280

80 250 0.001 NaN NaN

80 500 0.001 NaN NaN

80 750 0.001 NaN NaN

80 1000 0.001 NaN NaN

80 250 0.0001 0.1126 0.0807

80 500 0.0001 0.1175 0.0991

80 750 0.0001 NaN NaN

80 1000 0.0001 NaN NaN

80 250 0.00001 0.2347 0.2407

80 500 0.00001 0.1615 0.1577

80 750 0.00001 0.1517 0.1401

80 1000 0.00001 0.1226 0.1025

79

Chapter 5: Predicting final value from part of transient for sensors with preheating

0 10 20 30 40 50 60 70 80 90
Ordinal number of input

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

No
rm

al
ize

d
se

ns
or

 re
ad

in
gs

Predicted value
Expected value

(a) Absolute values (MQ-2)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Error intervals

0

10

20

30

40

50

60

70

Nu
m

be
r o

f t
ra

ns
ie

nt
s

(b) Errors histogram (MQ-2)

Figure 5.8. Comparison of predicted and expected values for MQ-2 gas sensor

collected over a 20-seconds period. In contrast, exponentially spaced data results in a lower
RMSE than evenly spaced readings. These findings suggest that the LSTM algorithm gains
the most information from the first part of the transient. However, it is important to note that
information about the last part of the transient is also crucial since logarithmically spaced
data has a higher RMSE than a model trained solely on data collected during the first second
or first 10 seconds.

5.2.5 Performance Testing with Scarce Data

To test how the models deal with scarce data, the algorithm is executed without transients
from every class in the training set, and then tested on the test set that contains excluded
classes. Results given in Table 5.6 show that some classes are smaller in both train and test

80

Chapter 5: Predicting final value from part of transient for sensors with preheating

Table 5.5. MQ-2 RMSE for different transient sizes

Test Size Train set RMSE Test set RMSE

1) 186 values – every 100ms 0.0926 0.0683
2) 20 values – every second 0.0615 0.0594
2b) 20 values – logarithmically spaced 0.0706 0.0654
2c) 20 values – exponentially spaced 0.1330 0.0874
3a) 10 values – every 2s 0.0940 0.0871
3b) 10 values – first 10 seconds 0.1226 0.1286
3c) 10 values – first second 0.1606 0.1673
3d) 10 values – logarithmically spaced 0.0808 0.0797
3e) 10 values – exponentially spaced 0.1136 0.0992

sets, hence they do not affect the results significantly, while largest c5 class affects results
significantly. The algorithm also tries to learn behaviour from the first and two last classes,
however results are not promising. When the biggest c5 class is included in training, test set
RMSE is 0.16624, which is a satisfying result in terms of machine learning.

Since 20 values long transients show better results than 186 values long one, similar tests
are performed with such setup as well. Results in Table 5.7 show that it is possible to train
data only with first, last and biggest class c5 with RMSE of 0.116627. In general, using 20
values long transient outperforms 186 long one.

Table 5.6. RMSE for different classes (transient size 186)

Dataset Train set RMSE Test set RMSE

C \{c0} 0.0794 0.0859
C \{c1} 0.0546 0.2074
C \{c2} 0.1171 0.0985
C \{c3} 0.1311 0.1102
C \{c4} 0.1104 0.1140
C \{c5} 0.1992 0.1580
C \{c6} 0.1044 0.1204
C \{c7} 0.0862 0.1013
C \{c0,c2,c3,c4,c6} 0.2052 0.1662
C \{c0,c2,c3,c4,c5} 0.1662 0.2279

C 0.0926 0.0683

81

Chapter 5: Predicting final value from part of transient for sensors with preheating

Table 5.7. RMSE for different classes (transient size 20)

Dataset Train set RMSE Test set RMSE

C \{c0} 0.0715 0.0634
C \{c1} 0.0409 0.1731
C \{c2} 0.0751 0.0668
C \{c3} 0.0564 0.0715
C \{c4} 0.0648 0.0685
C \{c5} 0.1916 0.1435
C \{c6} 0.0611 0.0608
C \{c7} 0.0664 0.0634
C \{c0,c2,c3,c4,c6} 0.0819 0.1166
C \{c0,c2,c3,c4,c5} 0.2210 0.1789

C 0.0615 0.0594

5.3 Evaluation and Discussion

In order to evaluate our methodology, approach is tested on MQ-5 and MQ-6 gas sensors
to verify its applicability on different low-cost sensors. The same online-sleep ratio of 20
seconds for an online and 120 seconds for a sleep period is used for testing MQ-5 and MQ-6
sensors.

5.3.1 MQ-5 Sensor Results

After data is collected with MQ-5 gas sensor following the same approach described in
section 5.1, neural network with parameters that provide the best results for MQ-2 gas sensor
are used. Collected dataset contains 223 transients in the train set and 70 transients in the
test set (∼24%). In the case of 186 values long transient, RMSE on the test set is 0.10801,
while in the case of 20 values long transient that has better results for MQ-2, test set RMSE
is better as well with the value of 0.07002, as shown in Table 5.8. As it is visible from Figure
5.9a and Figure 5.9b, the most errors are less than 10%, with 2 predictions from class 0.3-0.4
with the error above 20%.

5.3.2 MQ-6 Sensor Results

The same procedure is used for MQ-6 gas sensor. However, in this case the results are only
slightly worse than the ones for MQ-2 and MQ-5. Used dataset contains 216 transients in
the train set and 59 transients in the test set (∼27%). Again, the test set results are acquired
for both 186 and 20 values long transients. As with MQ-2 and MQ-5 gas sensors, MQ-6 also

82

Chapter 5: Predicting final value from part of transient for sensors with preheating

0 10 20 30 40 50 60 70
Ordinal number of input

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
No

rm
al

iz
ed

 s
en

so
r r

ea
di

ng
s

Predicted
Expected

(a) Absolute values (MQ-5)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Error intervals

0

10

20

30

40

50

Nu
m

be
r o

f t
ra

ns
ie

nt
s

(b) Errors histogram (MQ-5)

Figure 5.9. Comparison of predicted and expected values for MQ-5 gas sensor

0 10 20 30 40 50 60
Ordinal number of input

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
se

ns
or

 re
ad

in
gs

Predicted
Expected

(a) Absolute values (MQ-6)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Error intervals

0

10

20

30

40

50
Nu

m
be

r o
f e

rro
rs

(b) Errors histogram (MQ-6)

Figure 5.10. Comparison of predicted and expected values for MQ-6 gas sensor

Table 5.8. MQ-5 RMSE

Size Train set RMSE Test set RMSE

186 0.1104 0.1080
20 0.0702 0.0700

Table 5.9. MQ-6 RMSE

Size Train set RMSE Test set RMSE

186 0.1597 0.1405
20 0.1238 0.1238

gives better results with 20 values long transients having RMSE of 0.1239, while 186 values
long transients give RMSE of 0.1405, as shown in Table 5.9. Figures 5.10a and 5.10b depict
that more than 85% of predicted values have an error lower than 15% with the maximum
error of 25%.

83

Chapter 5: Predicting final value from part of transient for sensors with preheating

5.3.3 Discussion on Energy Efficiency

The results presented in this research show that LSTM prediction model can be used with
low-cost gas sensors such as MQ-2, MQ-5 and MQ-6 with sufficient accuracy. Predictions
for MQ-2 give the best accuracy measured with RMSE of 0.05938067 as the model is
calibrated for the specific sensor. In case of MQ-5 sensor, RMSE is 0.07002, which is
almost as good as in the case of MQ-2 sensor, while the results for MQ-6 are slightly worse
with RMSE value of 0.1239 that is still acceptable in terms of machine learning. Note that
parameters that give the best results for MQ-2 sensor are used as is without the calibration
for MQ-5 and MQ-6, which implies that the model could be further tweaked to obtain better
results.

Putting sensors to sleep only makes sense when trying to achieve energy savings. Energy
consumption is described with the following expression:

E = PT x ·TOA +PMQ ·TA +PMA · (TOA +TA)+PMS ·TS (5.2)

where:

• PT x is power consumed by LoRaWAN module used for data transmission [122]

• PMQ is power consumed by MQ-2 sensor [50]

• PMA is power consumed by microcontroller during online period [123]

• PMS is power consumed by microcontroller during sleep period [123]

• TOA is time on air calculated based on calculations shown in [124] using LoRaWAN
with Code Rate = 1, Spreading Factor = 10 and Bandwidth = 125kHz

• TA is online period

• TS is sleep period

Energy consumption is calculated for three sensor setups described in section 5.1 (Figure
5.1) and results are shown in Table 5.10. Since transmission interval is less than a second,

Table 5.10. Energy consumption

Scenario PT x PMQ PMA PMS TOA TA TS E

a) Always online

92.4mW 900mW 615mW 131.5mW

0.206s 140s 0s 212.25J
b-1) With full preheat and sleep period
(the best scenario)

0.206s 40s 100s 73.89J

b-2) With full preheat and sleep period
(the worst scenario)

0.206s 120s 20s 184.57J

c) With prediction based on a partial
preheat and sleep period

0.370s 20s 120s 46.22J

84

Chapter 5: Predicting final value from part of transient for sensors with preheating

0 20 40 60 80 100 120 140
Online period [s]

0

20

40

60

80

100

En
er

gy
 co

ns
um

pt
ion

 [%
]

Scenario c)

Scenario b-1)

Scenario b-2)
Scenario a)Total

Gas sensor
Microcontroller online
Microcontroller sleep
Transmission*

Figure 5.11. Energy consumption compared to the sensor that is always online
(*Transmission energy is insignificant compared to others, thus not visible in this figure)

when combined with transmission power, it results with insignificant energy consumption
compared to large power and intervals of online and sleep periods. The most significant
energy consumer is a gas sensor which requires up to 900mW (Figure 5.11). Note that a
microcontroller consumes energy during both periods; online and sleep. However, energy
consumed during sleep period is ∼ 4.5 times lower compared to the power consumed during
online period. Energy saving can be even bigger when using other microcontrollers instead
of Arduino Uno microcontroller board. That said, energy consumption highly depends on
the online period; the longer the online period is, the higher is the power consumption. Due
to specifics of MQ gas sensors explained in section 5.1.2, the shortest online period that is
suitable for such predictions is 20s, followed by 120s long sleep period.

As it is shown in Figure 5.11 and Table 5.10, our solution uses ∼80% less energy
compared to Scenario a) when sensor is always online, while online period is decreased by
∼85%. Since MQ-2 sensor needs at least 40 seconds to read actual value in the atmosphere
without gas, and around 120 seconds in the conditions with high gas concentration, our
approach can be compared to the best and the worst case. As it is visible from Figure 5.11
and Table 5.10, comparing our solution to Scenario b-1) With full preheat and sleep period -
the best scenario (40s online - 100s sleep); our solution consumes ∼40% less energy while
collecting ∼50% less data. Note that Scenario b-1) will miss large gas concentrations. In the
worst case, the sensor is online for 120s and sleeps 20s, which is the exact opposite of our
approach, meaning that the sensor will reduce data amount for ∼15% with ∼13% energy
savings.

85

Chapter 5: Predicting final value from part of transient for sensors with preheating

To sum up, the longer sleep period results with the higher energy savings. In our case, the
sensor is online for 20 seconds and then asleep for 120 seconds, resulting with approximately
500 - 520 seconds (∼8,5 minutes) of online time per hour, while sleeping for 3 000 - 3 120
seconds (∼51 minutes). Therefore, it is being online ∼3.5 hours a day; 1 day a week; 4.5
days a month or 52.15 days in a year. That said, our solution significantly reduces amount of
data with duty cycle of (∼85%) while increasing energy efficiency for ∼80%.

Comparing our solution to a scenario with the full preheat and sleep period (Figure 5.1b),
one trade-off has to be noted. Our solution sends 20 values towards a gateway and the
prediction is calculated on the gateway side, while the sensor in scenario in Figure 5.1b
sends only a single value. As it is visible from Figure 5.11 and Table 5.10, transmission
energy in case of 1 and 20 bytes is almost the same and it can be ignored compared to the
energy consumed by the gas sensor and Arduino Uno.

Moreover, even though a stabilised 5V external power supply is used in herein described
research, it is important to be aware of the limitations of Arduino analog-to-digital (ADC)
converter. The Arduino Uno supports operating frequencies up to 16 MHz, and the standard
ADC clock frequency is 125 kHz. Therefore, the ADC requires approximately 13 clock
cycles to complete a conversion, granting a standard maximum sampling rate of 9600
samples. The Arduino Uno has 6 analog inputs and an analog-to-digital converter with
10-bit resolution, meaning there are 1024 distinct values that can be returned as a result
from the ADC [125]. However, the measurement and conversion of voltage to the voltage
step of an analog input are not as stable as anticipated. If the Arduino Uno is plugged in
via USB, the input voltage is around 5V, but it is not stable. Therefore, it is important to
know the supply voltage at the exact moment the ADC reading is collected. Moreover, for
a referent voltage of 5V, an ADC value of 1 would result in a voltage step of 4.88mV since
there are 1024 ADC values, from 0 to 1023. Since the maximum ADC value is 1023, the
corresponding maximum voltage is 4.9951V.

To improve the accuracy of the Arduino ADC, additional external modules can be
connected to improve accuracy via hardware, or external libraries freely available from
the Arduino community on the Internet can be used to improve accuracy via software.
For example, the 16-bit analog-to-digital converter ADS1115 can be used to enable higher
resolution data acquisition than what was possible with an Arduino Uno alone. This precision
ADC had 4 channels and was connected to the Arduino through an I2C-compatible serial
interface. The ADS1115 can convert data at rates of up to 860 samples per second, enabling
high-resolution measurements of both large and small signals [126]. External libraries [127]
can also be used to improve ADC resolution by oversampling and/or averaging ADC data
[128–130].

Furthermore, TensorFlow Light for Microcontrollers (including Arduino platform) [131]
is now available and machine learning models can be deployed on the edges of an IoT system,

86

Chapter 5: Predicting final value from part of transient for sensors with preheating

i.e., a gateway [132] . Using this approach, another potential trade-off is the amount of energy
consumed when machine learning algorithm is deployed on a battery powered sensor as the
energy consumption can be higher than the energy savings gained with 120 seconds long
sleep period. Although this is out of our scope in this research, it is important to be aware of
the potential challenges and trade-offs.

5.4 Summary

The focus of this research is on sensors that need to preheat in order to reliably collect
data from the environment. Instead of waiting for sensor to heat up, the data trend that
sensor collects while heating up is analysed and referred to as a transient. It is shown
that long short-term memory (LSTM) neural network can be used to learn and later predict
actual value, from a part of the transient. In this case, LSTM neural network is trained to
predict the actual values of gas concentration from the transient of MQ-2 gas sensor acquired
during its preheat period. Furthermore, evaluation is performed on two different gas sensors,
namely MQ-5 and MQ-6. In the case of MQ-2 gas sensors, obtained RMSE is 0.05938067.
The optimal LSTM parameters used for MQ-2 were applied on MQ-5 and MQ-6 as well.
Predictions for MQ-5 sensor give RMSE value of 0.07002, while only slightly higher for
MQ-6 with the value of 0.1239.

The main contribution of this research is the investigation of MQ-2 sensor behaviour, as
well as the methodology for building a prediction model based on LSTM that we applied
on two additional low-cost gas sensors. The results indicate that in order to extend a battery
life, a sensor should wake up periodically to collect data and sleep in the meantime. In the
case of sensors that require heating up before collecting the actual value, only the beginning
of the transient can be collected and the actual value predicted on the gateway side using
LSTM neural network. This way, instead of being continuously online, the sensor collects
data for 20 seconds and sleeps for 120 seconds. Compared to the solution when the sensor is
online until the actual value is reached (up to two minutes) and then being sent to sleep, our
approach collects half as much data in the same 140 seconds period.

Our future work includes investigating the energy consumption in terms of data
transmission. We also plan to implement a machine learning algorithm on Arduino board
and investigate its energy consumption compared to the energy savings achieved with 120
seconds sleep period.

87

Chapter 5: Predicting final value from part of transient for sensors with preheating

88

6 Signal Type Classification - Time Series Data
Classification

On the other side of the IoT infrastructure, data classification is considered as a last part of
the research work. After data is collected, it has to be stored in data centers in a predefined
and consistent format, as inconsistent storage may potentially lead to the Digital Dark
Age [35], i.e., data from the digital age can be irrevocably lost [36]. Therefore, researchers
have identified the three challenges: (1) recognition of the signal type of a newly added
sensor; (2) distinguishing signals from different sources if the configuration is lost; and (3)
correct classification of signals after malfunctions of a distributed storage system, which
require metadata discovery/recovery. However, we propose a single solution, i.e., signal
type recognition, that can address all of the three above mentioned challenges. Therefore, it
is possible to recognise a signal coming from a specific type of sensor in an IoT network and
determine its type from a small signal chunk, thus enabling quick signal classification based
on the signal type recognition approach.

In this chapter [133], we research the ability of machine learning (ML) to learn
characteristics describing a specific signal type, and use that knowledge to successfully
classify signal chunks into specific signal types in an IoT network. In this research, three
classification approaches are compared, namely (1c) one class classification [5], (2c) two
class (binary) classification and (mc) multi class classification [134].

• (1c) One class classification approach contains n models for n different classes, where
each model recognises corresponding class without knowledge of other n−1 classes.

• (2c) Two class classification approach is a multi-model classification which also
consists of n models for n different classes, where each model recognises
corresponding class, while using the information about the remaining n−1 classes.

• (mc) Multi class classification approach consists of only one model which
differentiates between n classes, thus information about all n classes is required.

In this work, we consider both, streaming data and stored data modes. We show that multi
class (mc) random forest model has the highest accuracy. It can correctly classify signals
based on only 20 consecutive values in > 75% cases, regardless if it is used on consecutive
signal data in case of streaming or on randomly selected data from a large pre-stored dataset.

89

Chapter 6: Signal type classification

The rest of the chapter is organized as follows. Introduction is followed by section 6.1,
which describes our dataset and methodology. Section 6.2 presents results, while sections
6.3 and 6.4 discuss robustness evaluation for different use cases. Last section concludes the
chapter.

6.1 Dataset and Methodology

Datasets and algorithms used to address the issues associated with signal type recognition
from time series sensor data are covered in this section.

6.1.1 Dataset

The dataset used in this research contains 11 different signal types from 2 separate data
sources - meteorological data and computer resource utilization data (Table 6.1).

A meteorological dataset consists of 7 data types, namely humidity, ultraviolet (UV)
radiation, wind direction, wind speed, air pressure, temperature, and solar radiation. In this
dataset, data is collected every minute during almost 3 years (1/Jan/2017 - 6/Nov/2019), thus
containing 1 490 164 readings per monitored phenomenon.

The computer resource utilization dataset consists of 4 data types, namely available
memory, CPU utilization, space utilization, and memory utilization. In this dataset, data
is collected every minute during one week (2/Jul/2021 - 9/Jul/2021) from 14 computers, thus
containing 140 508 readings.

Among the 11 signal types, there are signals with the same data range but different
behaviour (i.e., CPU utilization and humidity), signals with a different range but similar
behaviour (UV and solar radiation), signals with the same range and same behaviour
(available memory and memory utilization), and signals with range and behaviour different
from all the rest (air pressure).

The first step in building a machine learning (ML) model, i.e., an instance of an ML
algorithm with specified hyper-parameters, is to prepare the ML dataset. Therefore, the
data from all 11 data sources is split into 3 parts (Figure 6.1): 1) a train set, which is used
for building an ML model; 2) a validation set for validation of prepared models; and 3) an
evaluation dataset for additional analysis, i.e., streaming and stored data analysis. Since
datasets from different sources do not have the same length, the size of validation and

Table 6.1. Dataset overview

Dataset Collection period Data types Data sources Input data (per data type) Input data Total

Meteorological Dataset 1 minute 7 1 1 490 164 10 431 148

Computer Dataset 1 minute 4 14 140 508 562 032

Entire Dataset 1 minute 11 N/A N/A 10 993 180

90

Chapter 6: Signal type classification

Evaluation
(20% of B)

Validation
(20% of B)

Train set
(60% of B)Dataset A

Evaluation
(20% of B)

Validation
(20% of B)

Train set
(60% of B)Dataset B

Evaluation
(20% of B)

Validation
(20% of B)

Train set
(60% of B)Dataset X Unused data

Unused data

Dataset size

Figure 6.1. Splitting datasets for training, validation and evaluation

evaluation datasets is calculated as 20% of the smallest dataset (i.e., 20% of dataset B in
Figure 6.1). The remaining part (at least 60% for the smallest dataset) is used for building
an ML model.

6.1.2 Methodology

The goal of this research is to compare and evaluate the applicability of different approaches
and corresponding ML models in order to successfully tackle three defined challenges: (1)
recognising signal type when a new sensor is added to an IoT network; (2) recognising
signal type when configuration metadata is lost due to connection issues and; (3) recognising
signal type when signal configuration and metadata are lost due to unexpected problems with
distributed storage.

To meet these requirements, the model should successfully distinguish 11 signal types,
i.e., 11 classes, based on IoT sensor readings. Distinguishing signal types in a short
period requires the model to be able to classify data from a small part of the signal
(window) collected in that short period. Furthermore, due to their limited configurability,
models are trained on a fixed size of signal chunks (window). In addition, pre-calculated
statistical values of that window (min, max, std, avg, median) are also used as inputs to ML
models. Initial results are obtained for window = 20. Afterwards, different window sizes =

{10,50,100} are analysed and compared for the most accurate models from the best and the
worst approaches.

In order to select the best model, three approaches are considered and analysed - one
class, two class and multi class classification. Furthermore, all ML models are implemented

91

Chapter 6: Signal type classification

using Python’s Sklearn library with default hyper-parameters. Additionally, the deep
learning algorithm long short-term memory (LSTM) neural network is analysed as well.
To build such a network, one LSTM layer and default Keras hyper-parameters are used.
However, since number of cells does not have a default value, it is calculated using Zaccone
and Karim’s equation defined in [135], and results in 16 LSTM cells.

One class (1c) approach is usually used to detect anomalies, thus, in this context it is used
to recognise what is not an anomaly [53]. Thus, 1c classification requires 11 models, one for
each of the 11 signal classes. Each model is trained only to recognise its own positive class,
without knowledge of the other 10 classes (Figure 6.2a). One class models tested for solving
this problem include one class support vector machine (OCSVM) and isolation forest (IF).

Two class (2c) classification also requires 11 models, each of which is trained on its
positive class and a small amount of inputs from each of 10 negative classes (Figure 6.2b).
Each algorithm contains 50% data from positive class and 50% data from negative class (5%
from each of the remaining 10 classes), therefore the dataset is balanced. Thus, information
about the remaining 10 classes is required. Two class models tested for solving this problem
include logistic regression (LR) as a linear model, random forest (RF) as a tree-based model,
k-nearest neighbors (kNN) as a non-linear model and long short-term memory (LSTM) as
a deep learning model. Additionally, a support vector machine (SVM) model is selected to
be compared with OCSVM. One class and two class ML models both output the predicted
probability that a signal belongs to the monitored class, thus recognising only one class, i.e.,
the positive class. Furthermore, the same ML model is used for all 11 classes in both 1c and
2c approaches.

Finally, multi class (mc) [54] classification has the knowledge of all 11 classes and thus
results with a single ML model, which outputs 11 predicted probabilities, one for each of 11
classes (Figure 6.2c). Multi class models tested for solving this problem are the same as the
ones used for two class classification, i.e. RF, SVM, kNN, LR and LSTM.

(a) One class (1c) (b) Two class (2c) (c) Multi class (mc)

Figure 6.2. Illustration of three approaches

92

Chapter 6: Signal type classification

6.2 Comparing Classification Algorithms

In this section, the results of models from three approaches, i.e. 1c, 2c and mc, are presented
in order to select a model that results with the highest number of correctly classified signals.
Figure 6.3 depicts the accuracy for all observed models from all three approaches with a
window of size 20. Figures 6.4 - 6.6 depict results as heatmaps. The horizontal axis of each
heatmap represents the actual signal class, while the vertical axis represents the signal class
recognised by an ML model. Thus, each row represents the actual signal, while a column
shows which models classify the signal as their own class. Therefore, the diagonal shows an
accuracy of an ML model, i.e., how accurately an ML model recognises the corresponding
signal class. Hence, the darker the diagonal, the more accurate the ML model is, and vice

versa, the more scattered the dark color is, the less accurate the ML model is.
The results of 1c approach models, trained only on a positive class, are depicted in

Figures 6.4a and 6.4b. As it is shown in Figures 6.3, 6.4a and 6.4b, 1c models give poor
results with an average accuracy lower than 20%. Nevertheless, in the 1c approach, IF has
slightly higher accuracy than OCSVM since IF has at least a visible diagonal. However,
the IF model classifies all signals except one as solar radiation. Therefore, the IF model
incorrectly classifies signals as solar radiation in the majority of cases. However, the 1c

approach can be used to eliminate the least probable classes and, thus, to reduce the number
of possible classes.

Comparing 2c (Figures 6.5a - 6.5e) and mc (Figures 6.6a - 6.6e) approaches, it is clear
that RF and kNN distinguish signals much better than SVM, LR or LSTM, since their
average accuracies (Figure 6.3) are above 40% for 2c and above 70% for mc approach.
Nevertheless, RF, with an average accuracy above 80%, is more accurate than kNN (Figure
6.3). Moreover, RF correctly classifies between all classes, while kNN can not differentiate
between some classes, i.e., solar and UV radiation. As an opposite example, majority of the

OCSMV IF
1c models

0

20

40

60

80

100

Ac
cu

ra
cy

RF SVM LR kNN LSTM
2c models

0

20

40

60

80

100

RF SVM LR kNN LSTM
mc models

0

20

40

60

80

100

Figure 6.3. Models accuracy

93

94 Chapter 6: Signal type classification

0

20

40

60

80

100

MEMa
MEMu

CPU
UTIL
HUM

UV
WINDd
WINDs
PRESS

TEMP
SOLAR

A
lg

or
ith

m
/S

ig
na

l

(a) OCSVM

M
E

M
a

M
E

M
u

C
P

U
U

TI
L

H
U

M U
V

W
IN

D
d

W
IN

D
s

P
R

E
S

S
TE

M
P

S
O

LA
R

MEMa
MEMu

CPU
UTIL
HUM

UV
WINDd
WINDs
PRESS

TEMP
SOLAR

A
lg

or
ith

m
/S

ig
na

l

(b) IF

Figure 6.4. One Class
results

MEMa
MEMu

CPU
UTIL
HUM

UV
WINDd
WINDs
PRESS

TEMP
SOLAR

(a) RF
MEMa
MEMu

CPU
UTIL
HUM

UV
WINDd
WINDs
PRESS

TEMP
SOLAR

(b) SVM

(c) LR

(d) kNN

M
EM

a
M

EM
u

C
PU

U
TI

L
H

U
M U
V

W
IN

D
d

W
IN

D
s

PR
ES

S
TE

M
P

SO
LA

R

MEMa
MEMu

CPU
UTIL
HUM

UV
WINDd
WINDs
PRESS

TEMP
SOLAR

(e) LSTM
Figure 6.5. Two class

results

(a) RF

(b) SVM

(c) LR

(d) kNN

M
EM

a
M

EM
u

C
PU

U
TI

L
H

U
M U
V

W
IN

D
d

W
IN

D
s

PR
ES

S
TE

M
P

SO
LA

R

(e) LSTM

Figure 6.6. Multi Class
results

Chapter 6: Signal type classification

studied models, OCSMV (Figure 6.4a), SVM (Figure 6.5b and Figure 6.6b) and LR (Figure
6.5c and Figure 6.6c) correctly recognise one class, i.e., air pressure, while this instance of
LSTM (Figure 6.5e and Figure 6.6e) among all classes only recognises wind speed.

Finally, as shown in Figures 6.3 - 6.6, the mc models performs better than 2c models.
Such results are due to mc models having knowledge on all classes. In comparison, the 2c

models know a positive class and a negative class as a combination of all other classes. Based
on this analysis, in the following section we focus only on the IF model as the best model
without knowledge of other classes and the mc RF as the best model with the knowledge of
other classes.

6.3 Algorithms Robustness

Based on the findings from the previous section, further evaluation is performed only on 1c

IF and mc RF algorithms as they give the best results for corresponding approaches. Our
goal here is to evaluate the robustness of the algorithms (1c IF and mc RF) to variations of
window size and two operation modes, streaming and stored data mode.

First, an analysis of window size, a chunk of a signal collected in a fixed time period,
is conducted. Four windows with 100, 50, 20 and 10 readings are analysed to determine
how a number of readings in a window affects the accuracy of the algorithms. Second, a
streaming mode is evaluated, which defines data that is continuously arriving in real time,
thus it is being evaluated on consecutive chunks of window size (Figure 6.7a). Third, stored
data mode is used when data is already collected and stored, however metadata is lost and
stored data types are unknown. Therefore, chunks can be selected randomly from the entire
set of stored data (Figure 6.7b).

6.3.1 Window Size Analysis

Window size analysis is performed on a dataset of 4000 readings for every class. Those
readings are split into chunks of different window sizes.

Results for the algorithm with the worst performance from previous section (1c IF) for
window sizes of 100, 50, 20 and 10 are shown in bar chart (Figure 6.8) and heatmaps (Figures
6.9a - 6.9d), respectively. Results for the algorithm with the best performance from the
previous section (mc RF) for window sizes 100, 50, 20 and 10 are shown in bar chart (Figure
6.8) and heatmaps (Figures 6.10a - 6.10d).

As depicted in Figures 6.8 - 6.10, the results show that the window size has no noticeable
effect on the algorithms accuracy since average accuracy is ∼ 20% for all 1c models and
∼ 80% for all mc models. Thus, window = 20 is selected for further evaluation. In the
following subsections, streaming and stored modes are evaluated on chunks of selected
window = 20.

95

Chapter 6: Signal type classification

1 2
3

Window
size

time

(a) Streaming data chunk selection

3
1

Window
size

2

va
lu

e

time

(b) Stored data chunk selection

Figure 6.7. Chunk selection

6.3.2 Streaming Data Analysis

Streaming data analysis implies that data is arriving in the real time. Analysis is evaluated on
100 random signals for all 11 classes resulting with validation set of 1 100 input signals. Each
of 1 100 signals consists of 1 000 consecutive readings which are split on consecutive chunks

of window size 20, thus resulting with total number of 980 chunks (Figure 6.7a). Figure 6.11a
for mc RF and Figure 6.11b for 1c IF depict the average accuracy of the algorithms for all 11
classes and all 100 random executions, i.e., an average of 1 100 executions. The blue area
at the bottom (actual) represents a case where the algorithm correctly classifies the positive
class. Other areas denoted 2nd − 11th depict cases when the positive class is predicted as
2nd − 11th probable class. Detailed average results for all classes are depicted in Figure

96

Chapter 6: Signal type classification

window 100 window 50 window 20 window 10
1c IF models

0

20

40

60

80

100
Ac

cu
ra

cy

window 100 window 50 window 20 window 10
mc RF models

0

20

40

60

80

100

Figure 6.8. Models accuracy for various window sizes

MEMa

MEMu

CPU

UTIL

HUM

UV

WINDd

WINDs

PRESS

TEMP

SOLAR

(a) window 100 (b) window 50 (c) window 20 (d) window 10

Figure 6.9. IF varying window size

M
E

M
a

M
E

M
u

C
P

U

U
TI

L

H
U

M U
V

W
IN

D
d

W
IN

D
s

P
R

E
S

S

TE
M

P

S
O

LA
R

MEMa

MEMu

CPU

UTIL

HUM

UV

WINDd

WINDs

PRESS

TEMP

SOLAR

(a) window 100

M
EM

a

M
EM

u

C
PU

U
TI

L

H
U

M U
V

W
IN

D
d

W
IN

D
s

PR
ES

S

TE
M

P

SO
LA

R

(b) window 50

M
EM

a

M
EM

u

C
PU

U
TI

L

H
U

M U
V

W
IN

D
d

W
IN

D
s

PR
ES

S

TE
M

P

SO
LA

R

(c) window 20

M
EM

a

M
EM

u

C
PU

U
TI

L

H
U

M U
V

W
IN

D
d

W
IN

D
s

PR
ES

S

TE
M

P

SO
LA

R

(d) window 10

Figure 6.10. mc RF varying window size

6.12.
Results show that RF multi class correctly classifies data in > 75% of cases (Figure

6.11a). Furthermore, if 2 most probable classes are considered, mc RF can eliminate the
remaining 9 classes with 95% accuracy, while correctly classifying > 98% of signals into 3
most probable classes. In contrast, 1c IF results are not as accurate since 1c IF does not have
information about classes other than the positive one (Figure 6.11b). A signal is correctly
classified in only ∼ 13% of cases. However, having in mind that one class approach is used
only when the total number of classes is unknown, 1c IF can still be used. Thus, it can help to

97

Chapter 6: Signal type classification

Number of chunks0.00

0.25

0.50

0.75

1.00 11th
10th
9th
8th
7th
6th
5th
4th
3rd
2nd
Actual

(a) mc RF

Number of chunks0.00

0.25

0.50

0.75

1.00 11th
10th
9th
8th
7th
6th
5th
4th
3rd
2nd
Actual

(b) 1c IF

Figure 6.11. Streaming data mode - combined mean accuracy per number of chunks
(window size = 20)

MEMa MEMu CPU UTIL HUM UV WINDd WINDs PRESS TEMP SOLAR
Actual Class

0

20

40

60

80

100

Pr
ed

ict
ed

 c
la

ss
 [%

]

MEMa MEMu CPU UTIL HUM UV WINDd WINDs PRESS TEMP SOLAR

Figure 6.12. Accuracy of mc RF streaming data

98

Chapter 6: Signal type classification

reduce the number of classes to consider since it classifies positive class in the first 6 classes
in ∼ 70% of cases.

6.3.3 Stored Data Analysis

In contrast to the streaming data, stored data is used when classifying previously collected
data. The same analysis as for the streaming data is performed for the stored data mode. For
all 11 classes, stored data analysis is evaluated on 100 random signals. Within each of the
signals, 980 chunks of window size 20 are randomly selected (Figure 6.7b).

Figure 6.13a for mc RF and Figure 6.13b for 1c IF depict the average accuracy of the
algorithms when all chunks of all 1 100 executions are selected randomly from the whole
evaluation dataset. Figure 6.14 depicts the average results of mc RF.

Results show that RF multi class correctly classifies data in ∼ 77% of cases for the most

Number of chunks0.00

0.25

0.50

0.75

1.00 11th
10th
9th
8th
7th
6th
5th
4th
3rd
2nd
Actual

(a) mc RF

Number of chunks0.00

0.25

0.50

0.75

1.00 11th
10th
9th
8th
7th
6th
5th
4th
3rd
2nd
Actual

(b) 1c IF

Figure 6.13. Stored data mode - combined mean accuracy per number of chunks (window
size = 20)

99

Chapter 6: Signal type classification

MEMa MEMu CPU UTIL HUM UV WINDd WINDs PRESS TEMP SOLAR
Actual Class

0

20

40

60

80

100

Pr
ed

ict
ed

 c
la

ss
 [%

]
MEMa MEMu CPU UTIL HUM UV WINDd WINDs PRESS TEMP SOLAR

Figure 6.14. Accuracy of mc RF stored data

probable class, in 95% for two most probable classes and > 98% if 3 most probable classes
are considered (Figure 6.13a). As for the streaming, the IF algorithm correctly classifies
signals in ∼ 13% cases and correctly classifies positive class in the first 6 classes in ∼ 70%
of cases (Figure 6.13b).

Therefore, there is no significant difference between streaming and stored data modes
since both approaches result in ∼ 76% for mc RF and ∼ 13% for 1c IF model. Furthermore,
the number of chunks is not important as well. Aggregated result depicted in Figures 6.11
and 6.13 have almost the same accuracy for the first and for the last chunk.

6.4 Discussion

In this research, we have evaluated and compared different approaches to model time series
data for signal type classification in order to solve 3 problems; (1) automatic recognition of
a signal type when a new sensor is added to an IoT network, (2) recognition of a streaming
signal type in a case of configuration data loss due to unexpected communication issues and
(3) classification of signal types in the case of unexpected data storage issues and thus loss
of configuration data and/or metadata. A machine learning model is usually trained when
setting up an IoT network. However, if the ML model is not pre-trained, it can be built from
chunks of previously collected and stored data that are properly linked with metadata, or it
can be built from scratch with completely new data arriving from known sensors.

In case there is an existing IoT network and the total number of signal types is fixed
and known, mc RF is the most accurate option for signal classification, while 1c algorithm
is the only option for new networks where the total number of signal types is unknown.
Furthermore, the 2c classification is a compromise between 1c and mc. For example, if there
are k known classes but new classes are expected to be added, initial models can be trained
for existing k classes, and models for remaining n−k classes can be trained afterwards. Thus,
the remaining n− k models will have information about previously added classes, while the
initial k models will only have information about each other’s classes. However, all models

100

Chapter 6: Signal type classification

can be retrained for each newly added class, but that is usually redundant. Optimally, only
models that lose their accuracy when a new class is added should be retrained. Furthermore,
cost-sensitive learning algorithms [136] that improve the classification performance of
imbalanced classification by assigning different misclassification costs to the minority and
the majority class samples should also be considered. Although the dataset used in this
research is balanced, a cost sensitive learning algorithm can be considered in the future for
2c approach in order to assign different misclassification costs to the positive class and the
negative class (remaining 10 classes). Additionally, different ML models can be used for 1c

and 2c approaches, i.e., a 1c OCSVM can be used to recognise available memory (MEMa),
while the remaining 10 classes can use a 1c IF.

The most complex part of the ML models training on our dataset was distinguishing
between UV and solar radiation. On one hand, all computer resource utilization classes
and humidity are calculated in the range of 0− 100%. Nevertheless, all of those classes
are correctly classified as their patterns are different. On the other hand, solar radiation and
UV are similar in nature, since solar radiation contains UV as its component, along with the
visible light, infrared, radio, X-rays, and gamma rays [137]. Furthermore, solar radiation and
UV both depend on sunlight, i.e., although UV and solar radiation do not have the same range
during the day, they both have value zero during the night. Night on average lasts for half of
a day, making it much longer than selected window = 20. Thus, night readings (twenty zero
values) are commonly classified as UV, for both UV and solar radiation. One of the reasons
for such behaviour is the behaviour of Python’s max function which selects a class with the
highest predicted probability. In the case of two classes with the same probability, Python’s
max function chooses the first one in the list, i.e., UV in this case.

As shown in the Algotithm Robustness section, a window size does not have a significant
effect on the algorithm accuracy. However, selecting a smaller window size reduces the
energy consumption since the smaller volume of data is fed into the ML model. Furthermore,
streaming and stored modes have similar results in terms of accuracy. Thus, accuracy is the
same if the algorithm is executed with consecutive or random values.

Whereas mc RF has an accuracy of more than 75%, 1c IF has an accuracy of only 13%.
However, both algorithms give additional information about n most probable classes for the
monitored signal type. If n = 2 most probable classes are considered, mc RF can eliminate
the remaining 9 classes with 95% accuracy, while correctly classifying > 98% of signals into
n = 3 most probable classes. The same behaviour is applicable to 1c IF since it can eliminate
5 least probable classes with the accuracy of > 70%. The latter behaviour is useful for new
IoT systems where the total number of signal types is unknown and, thus, a mc model cannot
be created.

However, there are still some limitations within this solution. Since sensors are expected
to always send data at the same reading period, 1 minute in our case, the optimization of
dynamically adapting the reading frequency is not applicable. Furthermore, there is also a

101

Chapter 6: Signal type classification

limitation on the analysed number of signal classes, 11 in our case. Moreover, this research
focuses on ML algorithms with default hyper-parameters to obtain preliminary results on
the feasibility of such solutions and does not consider more complex ML algorithms nor
hyper-parameter tuning. That being said, future research should include preparation of an
algorithm that will not be limited by a fixed period between readings, investigating how a
number of signal classes affects the accuracy of the algorithm and experimenting with more
complex ML algorithms and their hyper-parameters.

Furthermore, in an IoT network, it is not uncommon for new sensor types to be introduced
over time. However, collecting sufficient data to train a model that recognises the class
of a new sensor can be time-consuming, expensive, or even unrealistic. To address this
issue, transfer learning should be considered. Transfer learning is the process of transferring
knowledge from a related source domain to the target learners in the target domain to improve
their performance. In considered case, we propose use of the transfer learning for efficiently
training models to recognise newly added sensors in IoT networks. Specifically, we leverage
existing datasets that are similar, but not identical to the target domain to achieve improved
performance in a shorter time and with less training data. Homogeneous transfer learning
approaches are particularly suitable when domains are in the same feature space, allowing
the use of a predictive model trained on a dataset drawn from a domain that is highly similar
to the target domain. Our proposed methodology has the potential to accelerate the training
of models in IoT networks and reduce the costs associated with collecting and labeling large
amounts of training data [138, 139].

6.5 Summary

With the increase in number and size of Internet of Things systems, there is an ever-growing
risk of (meta)data loss, as well as the maintenance overhead to mitigate such risks. The
experts recognise three main challenges in this area that need to be tackled, namely:
(1) downsizing the manual work required for configuring sensor networks, (2) recovering
metadata in case of connection issues, malfunctions or malicious actions in sensor networks,
(3) rebuilding metadata lost due to unexpected problems within a data storage. Fortunately,
all three challenges can be tackled with an uniform solution, namely the signal type
classification approach, which is able to match raw signal to an appropriate data type.

In order to find such uniform solution, in this research, three machine learning
classification approaches, namely, one class, two class and multi class classification, are
compared and evaluated. The results show that the most accurate multi class random forest
algorithm can correctly classify signals in ∼ 75% cases despite being trained on a window as
short as 20 consecutive readings. Furthermore, the multi class random forest algorithm can
eliminate 9 out of 11 classes with an accuracy of 95% by classifying signal into two most
probable classes.

102

Chapter 6: Signal type classification

Finally, future steps in this field include preparing a similar algorithm that will not be
limited by a fixed period, one minute in this case, between readings; investigating how a
number of signal classes, 11 in this case, affects the accuracy of the algorithm; experimenting
with more complex algorithms and hyper-parameter tuning; and applying transfer learning
when adding new type of sensor.

103

Chapter 6: Signal type classification

104

7 Dissertation contribution

The main scientific contributions of this research include the development of new data
volume optimization methods and the reconstruction of data lost due to those optimizations
for IoT systems with a large number of sensors. More specifically:

1. A data collection method based on dynamic monitoring frequency that is used to
reduce the amount of data in the sensor network within the concept of the Internet
of Things

2. A method for predicting the real value of the observed phenomenon based on a limited
part of the transient signal from the sensor that requires reaching operational conditions

3. A signal type classification method for metadata reconstruction and optimization of
sensor configuration

All methods are validated on real data in a real environment.

105

Chapter 7: Dissertation Contribution

106

8 Conclusion

The Internet of Things (IoT) is growing every day, along with the number of sensors
collecting data and the amount of data itself. IoT sensors are typically battery-powered
endpoints distributed across large areas. On the one hand, constant data collection over the
short time intervals results in large energy consumption and short-lasting batteries. On the
other hand, increase in the amount of stored data requires an increase in the number and size
of data centers, and consequently, an increase in energy consumption.

Collected data can be filtered, aggregated, compressed, and/or correlated in order to
reduce the amount of data that is transferred and stored, as well as the energy used by an
entire IoT system. However, data must be collected before using any of the aforementioned
data reduction techniques. Therefore, battery-powered IoT sensors are still constantly
collecting data and consuming energy. Consequently, moving data reduction closer to
the edges of an IoT network reduces the amount of data circulating through the network;
however, it still does not reduce the energy consumption of sensors.

The main goal of this research is to locate places in IoT network where data velocity and
volume reductions can be made, while maintaining the value and variety of the data. Through
the research, we addressed three challenges and proposed three contributions: the first two
are concerned about reducing sensor online time and thus extending battery life, while the
third proposes a method for mitigating the risks introduced by reducing the amount of data
circulating through the IoT network, as well as the simplification of the configuration process
when adding a new sensor to an IoT network.

The first part of the research proposes and systematically analyses two approaches for
reading sensor data using dynamic monitoring frequency (DMF). The first approach is
founded on a statistical distribution of changes between consecutive readings, while the
second approach employs machine learning techniques to predict upcoming periods during
which the sensor data will experience acceptable change. Both algorithms are trained on data
that has been collected over the first two years and later evaluated on the third year. Results
indicate that the statistical DMF algorithm gives better results for higher frequencies, while
the machine learning DMF gives better results for lower frequencies. The biggest advantage
of the statistical DMF is that it does not limit the range of future periods. We also show that
significant accuracy can be achieved with shorter datasets, i.e., when using training dataset
of 1 or 6 months instead of full dataset that contains 2 years data.

107

Chapter 8: CONCLUSION

Through the second part of the research, we have used an LSTM neural network to
predict the actual values of gas concentration from the transient of MQ-2 gas sensor acquired
during its preheat period. The key aspects of the research are the examination of MQ-2
sensor behaviour and the development of a methodology for building a prediction model
using LSTM algorithms. Furthermore, this methodology is applied to two other low-cost gas
sensors, namely the MQ-5 and MQ-6 gas sensors. The results show that only the beginning
of the transient can be collected, and the actual value can be predicted on the gateway side
using an LSTM neural network in the case of sensors that require heating up before collecting
the actual value. This way, the sensor has to be online and collect data only for 20 seconds
before sleeping for 120 seconds.

In the third part of the research, three different machine learning classification approaches
for signal type recognition are compared and evaluated. Signal type classification is single
solution that can tackle challenges recognised by the researchers; automatic configuration of
sensors newly added to an IoT network and time series data classification when configuration
metadata is lost due to malfunctions of the network or data storage. One class, two class,
and multi class classification approaches were considered in order to achieve this goal. The
results show that the most accurate multi class random forest algorithm can correctly classify
signals in ∼ 75% cases and eliminate 9 out of 11 classes with an accuracy of 95%.

Next steps in the field can be divided in three parts, one for each part of the research.

• Implementation of an online DMF algorithm. Such an algorithm would work in two
phases. In first phase it collects data in very short periods and uses collected data for
self-training. The second phase starts when significant accuracy is reached. During
the second phase, the algorithm would apply gained knowledge and predict future
periods. These two phases can interchange and algorithm can update its knowledge
periodically.

• Investigating the energy consumption in a terms of data transmission when sending
transient data to the cloud for data prediction. Furthermore, the future step is to
implement a machine learning algorithm on Arduino Uno board and investigate its
energy consumption compared to the energy savings achieved with 120 seconds sleep
period.

• Preparing a signal type recognition algorithm that will not be limited by a fixed period,
one minute in this case, between readings; investigating how a number of signal
classes, 11 in this case, affects the accuracy of the algorithm; experimenting with more
complex algorithms and hyper-parameter tuning; and applying transfer learning when
adding new type of sensor.

108

BIBLIOGRAPHY

[1] H. Arghandabi, A comparative study of machine learning algorithms for the
prediction of heart disease, International Journal for Research in Applied Science
and Engineering Technology, 8, 12, 677–683, Dec. 2020.

[2] C. Wang, Y. Sun, W. Wang, H. Liu and B. Wang, Hybrid intrusion detection system
based on combination of random forest and autoencoder, Symmetry, 15, 3, 2023.

[3] A. M. Musolf, E. R. Holzinger, J. D. Malley and J. E. Bailey-Wilson, What makes a
good prediction? feature importance and beginning to open the black box of machine
learning in genetics, Human Genetics, 141, 9, 1515–1528, Dec. 2021.

[4] A. Géron, "Hands-On Machine Learning with Scikit-Learn and TensorFlow",
O’Reilly, Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472, 1st
edn., 2017.

[5] P. Perera, P. Oza and V. Patel, One-class classification: A survey, 01 2021.

[6] G. Huang, J. Chen and L. Liu, One-class SVM model-based tunnel personnel safety
detection technology, Applied Sciences, 13, 3, 1734, Jan. 2023.

[7] Y. Regaya, F. Fadli and A. Amira, Point-denoise: Unsupervised outlier detection
for 3d point clouds enhancement, Multimedia Tools and Applications, 80, 18,
28161–28177, May 2021.

[8] Ali Zaidi, Andres Barnneby, Ala Nazari, Marie Hogan and Christian Kuhlins,
Whitepaper on Cellular IoT in the 5G era, Tech. rep., Ericsson, 2020, available.

[9] M. H. Ali Zaidi, Yasir Hussain and C. Kuhlins, Whitepaper on Cellular IoT Evolution
for Industry Digitalization, Tech. rep., Ericsson, 2019, available.

[10] Ericsson, Cellular IoT Evolution for Industry
Digitalization, Tech. rep., Ericsson, 2019, Available:
https://www.ericsson.com/en/white-papers/cellular-iot-evolution-for-industry-digitalization.

[11] V. Mushunuri, A. Kattepur, H. K. Rath and A. Simha, Resource optimization in fog
enabled iot deployments, 2017 Second International Conference on Fog and Mobile
Edge Computing (FMEC), 6–13, 2017.

[12] F. Samie, V. Tsoutsouras, L. Bauer, S. Xydis, D. Soudris and J. Henkel, Computation
offloading and resource allocation for low-power iot edge devices, 2016 IEEE 3rd
World Forum on Internet of Things, 2016.

109

BIBLIOGRAPHY

[13] P. Buonadonna, D. Gay, J. Hellerstein, W. Hong and S. Madden, Task: sensor
network in a box, Proceeedings of the Second European Workshop on Wireless Sensor
Networks, 2005., 133–144, 2005.

[14] IDC, Worldwide Global DataSphere IoT Device and Data
Forecast, 2020–2024, Tech. rep., IDC, 2019, Available:
https://www.idc.com/getdoc.jsp?containerId=prUS45213219.

[15] J. G. D. Reinsel and J. Rydning , The Digitization of the World From Edge to Core,
IDC Whitepaper, 2018.

[16] P. Derbeko, S. Dolev, E. Gudes and J. D. Ullman, Concise essence-preserving big
data representation, 2016 IEEE International Conference on Big Data (Big Data),
3662–3665, 2016.

[17] S. Kumar and V. K. Chaurasiya, A Strategy for Elimination of Data Redundancy
in Internet of Things (IoT) Based Wireless Sensor Network (WSN), IEEE Systems
Journal, 13, 2, 1650–1657, June 2019.

[18] R. Radha and M. Muralidhara, Removal of Redundant and Irrelevant Data From
Training Datasets Using Speedy Feature Selection Method, International Journal of
Computer Science and Mobile Computing (IJCSMC), 5, 359–364, July 2016.

[19] B. Kerr, Big Data: The 5 Vs Everyone Must Know, https://www.linkedin.com/
pulse/20140306073407-64875646-big-data-the-5-vs-everyone-must-know,
[Accessed December 15th 2022.].

[20] A. Moon, J. Kim, J. Zhang and S. W. Son, Lossy compression on iot big data
by exploiting spatiotemporal correlation, 2017 IEEE High Performance Extreme
Computing Conference (HPEC), 1–7, 2017.

[21] A. Papageorgiou, B. Cheng and E. Kovacs, Real-time data reduction at the network
edge of internet-of-things systems, 2015 11th International Conference on Network
and Service Management (CNSM), 284–291, 2015.

[22] T. Shu, J. Chen, V. K. Bhargava and C. W. de Silva, An Energy-Efficient Dual
Prediction Scheme Using LMS Filter and LSTM in Wireless Sensor Networks for
Environment Monitoring, IEEE Internet of Things Journal, 6, 4, 6736–6747, Aug
2019.

[23] I. Ez-Zazi, M. Arioua and A. El Oualkadi, Adaptive joint lossy source-channel coding
for multihop iot networks, Wireless Communications and Mobile Computing, 2020,
1–15, 05 2020.

[24] J. Čulić Gambiroža and T. Mastelic, Big Data Challenges and Trade-offs in Energy
Efficient Internet of Things systems, 26th International Conference on Software,
Telecommunications and Computer Networks (SoftCOM), 1–6, Sep. 2018.

[25] E. I. Gaura, J. Brusey, M. Allen, R. Wilkins, D. Goldsmith and R. Rednic, Edge
mining the internet of things, IEEE Sensors Journal, 13, 10, 3816–3825, 2013.

110

https://www.linkedin.com/pulse/20140306073407-64875646-big-data-the-5-vs-everyone-must-know
https://www.linkedin.com/pulse/20140306073407-64875646-big-data-the-5-vs-everyone-must-know

BIBLIOGRAPHY

[26] S. A. Al-Qaseemi, H. A. Almulhim, M. F. Almulhim and S. R. Chaudhry, Iot
architecture challenges and issues: Lack of standardization, 2016 Future Technologies
Conference (FTC), 731–738, 2016.

[27] J. C. Gambiroza, T. Mastelic, P. Solic and M. Cagalj, Capacity in lorawan networks:
Challenges and opportunities, 2019 4th International Conference on Smart and
Sustainable Technologies (SpliTech), 1–6, 2019.

[28] G. Aloi, G. Caliciuri, G. Fortino, R. Gravina, P. Pace, W. Russo and
C. Savaglio, Enabling iot interoperability through opportunistic smartphone-based
mobile gateways, Journal of Network and Computer Applications, 81, 74–84, 2017.

[29] A. Mukherjee, Energy efficiency and delay in 5g ultra-reliable low-latency
communications system architectures, IEEE Network, 32, 2, 55–61, 2018.

[30] R. Han, F. Zhang, L. Y. Chen and J. Zhan, Work-in-progress: Maximizing model
accuracy in real-time and iterative machine learning, 2017 IEEE Real-Time Systems
Symposium (RTSS), 351–353, 2017.

[31] M. Aazam, S. Zeadally and K. A. Harras, Fog computing architecture, evaluation, and
future research directions, IEEE Communications Magazine, 56, 5, 46–52, 2018.

[32] K. B. Andrew Banks, Ed Briggs and R. Gupta, MQTT Version 5.0, https://docs.
oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf, March 2019, [Accessed
December 15th 2022.].

[33] J. Čulić Gambiroža, T. Mastelić, I. Nižetić Kosović and M. Čagalj, Dynamic
monitoring frequency for energy-efficient data collection in internet of things, Journal
of Computational Science, 64, 101842, 2022.

[34] Z. Jia, X. Lyu, W. Zhang, R. P. Martin, R. E. Howard and Y. Zhang,
Continuous Low-Power Ammonia Monitoring Using Long Short-Term Memory
Neural Networks, The 16th ACM Conference on Embedded Networked Sensor
Systems (SenSys), 1–6, 2018.

[35] T. Kuny, The digital dark ages? Challenges in the preservation of electronic
information, 1998.

[36] E. Tonkin, G. Tourte and A. Gill, Crowd mining applied to preservation of
digital cultural heritage, 1 of Cultural Computing, 115–136, Springer International
Publishing AG, Switzerland, 2018.

[37] L. Johnston, Challenges in preservation and archiving digital materials, Information
Services & Use, 40, 193–199, 2020, 3.

[38] C. Perera, P. P. Jayaraman, A. Zaslavsky, D. Georgakopoulos and P. Christen, Sensor
discovery and configuration framework for the internet of things paradigm, 2014 IEEE
World Forum on Internet of Things (WF-IoT), 94–99, 2014.

[39] S. S. Madsen, A. Q. Santos and B. N. Jørgensen, A QR code based framework for
auto-configuration of IoT sensor networks in buildings, Energy Informatics, 4, 2, 46,
Sep 2021.

111

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf

BIBLIOGRAPHY

[40] C. Perera, P. Jayaraman, A. Zaslavsky, P. Christen and D. Georgakopoulos, Dynamic
configuration of sensors using mobile sensor hub in internet of things paradigm, 2013
IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and
Information Processing, 473–478, 2013.

[41] K. Ni, R. Nithya, M. Chehade, L. Balzano, S. Nair, S. Zahedi, E. Kohler, G. Pottie,
M. Hansen and M. Srivastava, Sensor network data fault types, TOSN, 5, 05 2009.

[42] H. Cai, B. Xu, L. Jiang and A. V. Vasilakos, Iot-based big data storage systems in
cloud computing: Perspectives and challenges, IEEE Internet of Things Journal, 4, 1,
75–87, 2017.

[43] O. B. Sezer, E. Dogdu and A. M. Ozbayoglu, Context-aware computing, learning, and
big data in internet of things: A survey, IEEE Internet of Things Journal, 5, 1, 1–27,
2018.

[44] P. N. Sawadogo and J. Darmont, On data lake architectures and metadata management,
Journal of Intelligent Information Systems, 56, 1–24, 02 2021.

[45] F. Ravat and Y. Zhao, Metadata management for data lakes, T. Welzer, J. Eder,
V. Podgorelec, R. Wrembel, M. Ivanović, J. Gamper, M. Morzy, T. Tzouramanis,
J. Darmont and A. Kamišalić Latifić, editors, New Trends in Databases and
Information Systems, 37–44, Springer International Publishing, Cham, 2019.

[46] K. Tidriri, N. Chatti, S. Verron and T. Tiplica, Bridging data-driven and model-based
approaches for process fault diagnosis and health monitoring: A review of researches
and future challenges, Annual Reviews in Control, 42, 63–81, 2016.

[47] N. McClure, "TensorFlow Machine Learning Cookbook", Packt Publishing Ltd.,
Livery Place, 35 Livery Street, Birmingham B3 2PB, UK, 1st edn., 2017.

[48] I. J. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, Cambridge,
MA, USA, 2016, http://www.deeplearningbook.org.

[49] R. Atienza, Advanced Deep Learning with Keras, Packt Publishing, 2018.

[50] M.-. G. Sensor, MQ-2 Semiconductor Sensor for Combustible Gas, https://www.
pololu.com/file/0J309/MQ2.pdf, [Accessed March 29th 2023.].

[51] M.-. G. Sensor, Technical Data MQ-5 Gas Sensor, https://files.seeedstudio.
com/wiki/Grove-Gas_Sensor-MQ5/res/MQ-5.pdf, [Accessed March 29th 2023.].

[52] M.-. G. Sensor, MQ-6 Semiconductor Sensor for LPG, https://www.sparkfun.
com/datasheets/Sensors/Biometric/MQ-6.pdf, [Accessed March 29th 2023.].

[53] C. Bellinger, S. Sharma and N. Japkowicz, One-class versus binary classification:
Which and when?, 2012 11th International Conference on Machine Learning and
Applications, 2, 102–106, 2012.

[54] K. Hempstalk and E. Frank, Discriminating against new classes: One-class versus
multi-class classification, W. Wobcke and M. Zhang, editors, AI 2008: Advances
in Artificial Intelligence, 325–336, Springer Berlin Heidelberg, Berlin, Heidelberg,
2008.

112

http://www.deeplearningbook.org
https://www.pololu.com/file/0J309/MQ2.pdf
https://www.pololu.com/file/0J309/MQ2.pdf
https://files.seeedstudio.com/wiki/Grove-Gas_Sensor-MQ5/res/MQ-5.pdf
https://files.seeedstudio.com/wiki/Grove-Gas_Sensor-MQ5/res/MQ-5.pdf
https://www.sparkfun.com/datasheets/Sensors/Biometric/MQ-6.pdf
https://www.sparkfun.com/datasheets/Sensors/Biometric/MQ-6.pdf

BIBLIOGRAPHY

[55] T. Mastelic and I. Brandic, Data velocity scaling via dynamic monitoring frequency
on ultrascale infrastructures, 2015 IEEE 7th International Conference on Cloud
Computing Technology and Science, 2015.

[56] D. Trihinas, G. Pallis and M. D. Dikaiakos, Adam: An adaptive monitoring framework
for sampling and filtering on iot devices, 2015 IEEE International Conference on Big
Data (Big Data), 717–726, 2015.

[57] C. Arendt, S. Böcker and C. Wietfeld, Data-driven model-predictive communication
for resource-efficient iot networks, 2020 IEEE 6th World Forum on Internet of Things
(WF-IoT), 1–6, 2020.

[58] C. Cecchinel, F. Fouquet, S. Mosser and P. Collet, Leveraging live machine learning
and deep sleep to support a self-adaptive efficient configuration of battery powered
sensors, Future Generation Computer Systems, 92, 225–240, 2019.

[59] D. Zordan, M. Rossi and M. Zorzi, Rate-distortion classification for self-tuning iot
networks, 2017 IEEE International Conference on Communications Workshops (ICC
Workshops), 857–863, 2017.

[60] A. M. bin Baharudin, M. Saari, P. Sillberg, P. Rantanen, J. Soini and T. Kuroda,
Low-energy algorithm for self-controlled wireless sensor nodes, 2016 International
Conference on Wireless Networks and Mobile Communications (WINCOM), 42–46,
2016.

[61] M. Liyanage, C. Chang and S. N. Srirama, Energy-efficient mobile data acquisition
using opportunistic internet of things gateway services, 2016 IEEE International
Conference on Internet of Things and IEEE Green Computing and Communications
and IEEE Cyber, Physical and Social Computing and IEEE Smart Data, 217–222,
2016.

[62] V. Natarajan and A. Vyas, Power efficient compressive sensing for continuous
monitoring of ecg and ppg in a wearable system, 2016 IEEE 3rd World Forum on
Internet of Things (WF-IoT), 336–341, 2016.

[63] K. Wang, Y. Wang, Y. Sun, S. Guo and J. Wu, Green industrial internet of things
architecture: An energy-efficient perspective, IEEE Communications Magazine, 54,
12, 48–54, 2016.

[64] P. Khandel, A. H. Rassafi, V. Pourahmadi, S. Sharifian and R. Zheng, Sensordrop:
A reinforcement learning framework for communication overhead reduction on the
edge, CoRR, abs/1910.01601, 2019.

[65] C. Razafimandimby, V. Loscrí, A. M. Vegni and A. Neri, A bayesian and smart
gateway based communication for noisy iot scenario, 2017 International Conference
on Computing, Networking and Communications (ICNC), 481–485, 2017.

[66] T. Soultanopoulos, S. Sotiriadis, E. G. M. Petrakis and C. Amza, Data management
of sensor signals for high bandwidth data streaming to the cloud, 2016 IEEE 37th
Sarnoff Symposium, 53–58, 2016.

113

BIBLIOGRAPHY

[67] C. Ge, Z. Sun, N. Wang, K. Xu and J. Wu, Energy management in cross-domain
content delivery networks: A theoretical perspective, IEEE Transactions on Network
and Service Management, 11, 3, 264–277, 2014.

[68] S. Meng and L. Liu, Enhanced monitoring-as-a-service for effective cloud
management, IEEE Transactions on Computers, 62, 9, 1705–1720, 2013.

[69] A. Eliseev, D. Kachalov and M. Farhadov, Modern methods to collect, store, and
process big data in large-scale systems, 179–182, 11 2017.

[70] I. N. Kosovic, T. Mastelic and D. Ivankovic, Using artificial intelligence
on environmental data from internet of things for estimating solar radiation:
Comprehensive analysis, Journal of Cleaner Production, 266, 2020.

[71] D. L. Osorio-Arrieta, J. L. Muñoz-Mata, G. Beltrán-Pérez, J. Castillo-Mixcóatl,
C. O. Mendoza-Barrera, V. Altuzar-Aguilar and S. Muñoz-Aguirre, Reduction of the
measurement time by the prediction of the steady-state response for quartz crystal
microbalance gas sensors, Sensors, 18, 8, 2018.

[72] Q. Zhang, S. Li, W. Tang and X. Guo, Fast measurement with chemical sensors based
on sliding window sampling and mixed-feature extraction, IEEE Sensors Journal, 20,
8740–8745, 2020.

[73] I. Lujic, V. De Maio and I. Brandic, Efficient edge storage management based on
near real-time forecasts, 2017 IEEE 1st International Conference on Fog and Edge
Computing (ICFEC), 21–30, 2017.

[74] L. Salhi, T. Silverston, T. Yamazaki and T. Miyoshi, Early Detection System for Gas
Leakage and Fire in Smart Home Using Machine Learning, 2019 IEEE International
Conference on Consumer Electronics (ICCE), 1–6, Jan 2019.

[75] G. A. Susto, A. Cenedese and M. Terzi, Chapter 9 - time-series classification methods:
Review and applications to power systems data, R. Arghandeh and Y. Zhou, editors,
Big Data Application in Power Systems, 179–220, 2018.

[76] P. Geurts, Pattern extraction for time series classification, PKDD, 2001.

[77] S. Papadimitriou, J. Sun and C. Faloutsos, Streaming pattern discovery in multiple
time-series, Proceedings of the 31st International Conference on Very Large Data
Bases, VLDB ’05, 697–708, 2005.

[78] Z. Wang, W. Yan and T. Oates, Time series classification from scratch with deep
neural networks: A strong baseline, 2017 International Joint Conference on Neural
Networks (IJCNN), 1578–1585, 2017.

[79] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar and P.-A. Muller, Deep learning
for time series classification: a review, Data Mining and Knowledge Discovery, 33, 4,
917–963, Jul 2019.

[80] A. Jastrzebska, Time series classification through visual pattern recognition, Journal
of King Saud University - Computer and Information Sciences, 2019.

114

BIBLIOGRAPHY

[81] B. Lamrini, A. Gjini, S. Daudin, F. Armando, P. Pratmarty and L. Travé-Massuyès,
Anomaly detection using similarity-based one-class svm for network traffic
characterization, 08 2018.

[82] B. Zhao, H. Lu, S. Chen, J. Liu and D. Wu, Convolutional neural networks for time
series classification, Journal of Systems Engineering and Electronics, 28, 1, 162–169,
2017.

[83] M. R. Shahid, G. Blanc, Z. Zhang and H. Debar, Iot devices recognition through
network traffic analysis, 2018 IEEE International Conference on Big Data (Big Data),
5187–5192, 2018.

[84] Z. Chen, Y. Liu and S. Liu, Mechanical state prediction based on LSTM neural
netwok, 2017 36th Chinese Control Conference (CCC), 3876–3881, July 2017.

[85] Y. Wang, J. Zhou, K. Chen, Y. Wang and L. Liu, Water quality prediction method
based on LSTM neural network, 2017 12th International Conference on Intelligent
Systems and Knowledge Engineering (ISKE), 1–5, Nov 2017.

[86] L. Yu, J. Chen and G. Ding, Spectrum prediction via long short term memory,
2017 3rd IEEE International Conference on Computer and Communications (ICCC),
643–647, Dec 2017.

[87] S. Liu, G. Liao and Y. Ding, Stock transaction prediction modeling and analysis based
on LSTM, 2018 13th IEEE Conference on Industrial Electronics and Applications
(ICIEA), 2787–2790, May 2018.

[88] W. Yao, P. Huang and Z. Jia, Multidimensional LSTM Networks to Predict Wind
Speed, 2018 37th Chinese Control Conference (CCC), 7493–7497, July 2018.

[89] N. Kim, M. Kim and J. K. Choi, LSTM Based Short-term Electricity Consumption
Forecast with Daily Load Profile Sequences, 2018 IEEE 7th Global Conference on
Consumer Electronics (GCCE), 136–137, Oct 2018.

[90] F. Qian and X. Chen, Stock Prediction Based on LSTM under Different Stability,
2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis
(ICCCBDA), 483–486, April 2019.

[91] I. Boulanouar, S. Lohier, A. Rachedi and G. Roussel, Dta: Deployment and tracking
algorithm in wireless multimedia sensor networks, Ad-Hoc and Sensor Wireless
Networks, 28, 01 2015.

[92] I. Boulanouar, A. Rachedi, S. Lohier and G. Roussel, Energy-aware object tracking
algorithm using heterogeneous wireless sensor networks, 2011 IFIP Wireless Days
(WD), 1–6, 2011.

[93] A. A. Khan, M. H. Rehmani and A. Rachedi, Cognitive-radio-based internet of things:
Applications, architectures, spectrum related functionalities, and future research
directions, IEEE Wireless Communications, 24, 3, 17–25, 2017.

[94] B. Liu, J. Wang, S. Ma, F. Zhou, Y. Ma and G. Lu, Energy-efficient cooperation
in mobile edge computing-enabled cognitive radio networks, IEEE Access, 7,
45382–45394, 2019.

115

BIBLIOGRAPHY

[95] J. Brownlee, Machine learning mastery with python: Understand your data, create
accurate models and work projects end-to-end, Jason Brownlee, 2021.

[96] J. M. Stanton, Galton, pearson, and the peas: A brief history of linear regression for
statistics instructors, Journal of Statistics Education, 9, 3, Jan. 2001.

[97] J. Cramer, The origins of logistic regression, SSRN Electronic Journal, 2003.

[98] L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone, Classification And
Regression Trees, Routledge, Oct. 2017.

[99] L. Breiman, Machine Learning, 45, 1, 5–32, 2001.

[100] T. K. Ho, The random subspace method for constructing decision forests, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20, 8, 832–844, 1998.

[101] V. N. Vapnik, Pattern recognition using generalized portrait method, Automation and
Remote Control, 24, 774–780, 1963.

[102] E. Fix and J. L. Hodges, Discriminatory analysis. nonparametric discrimination:
Consistency properties, International Statistical Review / Revue Internationale de
Statistique, 57, 3, 238, Dec. 1989.

[103] T. Cover and P. Hart, Nearest neighbor pattern classification, IEEE Transactions on
Information Theory, 13, 1, 21–27, 1967.

[104] sklearn, sklearn KDTree, https://scikit-learn.org/stable/modules/
generated/sklearn.neighbors.KDTree.html, [Accessed April 19th 2023.].

[105] sklearn, sklearn BallTree, https://scikit-learn.org/stable/modules/
generated/sklearn.neighbors.BallTree.html, [Accessed April 19th 2023.].

[106] W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous
activity, The Bulletin of Mathematical Biophysics, 5, 4, 115–133, Dec. 1943.

[107] F. Rosenblatt, The perceptron: A probabilistic model for information storage and
organization in the brain., Psychological Review, 65, 6, 386–408, 1958.

[108] D. E. Rumelhart, G. E. Hinton and R. J. Williams, Learning representations by
back-propagating errors, Nature, 323, 6088, 533–536, Oct. 1986.

[109] S. Hochreiter and J. Schmidhuber, Long Short-Term Memory, Neural Computation,
9, 8, 1735–1780, 11 1997.

[110] M. M. Moya and D. R. Hush, Network constraints and multi-objective optimization
for one-class classification, Neural Networks, 9, 3, 463–474, 1996.

[111] N. Seliya, A. A. Zadeh and T. M. Khoshgoftaar, A literature review on one-class
classification and its potential applications in big data, Journal of Big Data, 8, 1, Sep.
2021.

[112] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola and R. C. Williamson,
Estimating the Support of a High-Dimensional Distribution, Neural Computation, 13,
7, 1443–1471, 07 2001.

116

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html

BIBLIOGRAPHY

[113] F. T. Liu, K. M. Ting and Z.-H. Zhou, Isolation forest, 2008 Eighth IEEE International
Conference on Data Mining, 413–422, 2008.

[114] L. Breiman, Random forests, Machine Learning, 45, 1, 5–32, 2001.

[115] J. Čulić Gambiroža, T. Mastelić, T. Kovačević and M. Čagalj, Predicting low-cost gas
sensor readings from transients using long short-term memory neural networks, IEEE
Internet of Things Journal, 7, 9, 2020.

[116] C. Baratto, F. Rigoni, G. Faglia, E. Comini, D. Zappa and G. Sberveglieri, ZnO
and SnO2one-dimensional sensors for detection of hazardous gases, 2017 IEEE
SENSORS, 1–3, Oct 2017.

[117] L. Scholz, A. O. Perez, B. Bierer, P. Eaksen, J. Wöllenstein and S. Palzer, Carbon
dioxide sensor for mobile devices: A novel approach for low-power consuming,
highly sensitive NDIR sensors, 2016 IEEE SENSORS, 1–3, Oct 2016.

[118] S. Rademacher, K. Schmitt, M. Mengers and J. Wöllenstein, Sensor network with
energy efficient and low-cost gas sensor nodes for the detection of hazardous
substances in the event of a disaster, 2015 IEEE Topical Conference on Wireless
Sensors and Sensor Networks (WiSNet), 59–61, Jan 2015.

[119] R. DS3231, RTC DS3231 Datasheet, https://datasheets.maximintegrated.
com/en/ds/DS3231.pdf, [Accessed March 25th 2023.].

[120] M. IRFZ44N, MOSFET IRFZ44N Datasheet, https://datasheet.octopart.
com/IRFZ44N-Inchange-Semiconductor-datasheet-15981338.pdf, [Accessed
March 25th 2023.].

[121] M. Kuhn and K. Johnson, Applied predictive modeling, Springer, New York, NY,
2013.

[122] T. Bouguera, Energy consumption model for sensor nodes based on lora and lorawan,
Sensors, 18, 06 2018.

[123] M. Al-Shorman, M. Al-Kofahi and O. Al-Kofahi, A practical microwatt-meter for
electrical energy measurement in programmable devices, Measurement and Control,
51, 08 2018.

[124] D. Singh, O. G. Aliu and M. Kretschmer, Lora wan evaluation for iot communications,
2018 International Conference on Advances in Computing, Communications and
Informatics (ICACCI), 163–171, Sep. 2018.

[125] L. Müller, M. Mohammed and J. W. Kimball, Using the arduino uno to teach digital
control of power electronics, 2015 IEEE 16th Workshop on Control and Modeling for
Power Electronics (COMPEL), 1–8, 2015.

[126] M. Zouheir, M. Zniber, S. Qudsia and T.-P. Huynh, Real-time humidity sensing
by integration of copper sulfide nanocomposite with low-cost and wireless arduino
platform, Sensors and Actuators A: Physical, 319, 112541, 2021.

[127] Arduino, ArduinoLibraries, https://www.arduino.cc/reference/en/
libraries/, [Accessed March 14th 2023.].

117

https://datasheets.maximintegrated.com/en/ds/DS3231.pdf
https://datasheets.maximintegrated.com/en/ds/DS3231.pdf
https://datasheet.octopart.com/IRFZ44N-Inchange-Semiconductor-datasheet-15981338.pdf
https://datasheet.octopart.com/IRFZ44N-Inchange-Semiconductor-datasheet-15981338.pdf
https://www.arduino.cc/reference/en/libraries/
https://www.arduino.cc/reference/en/libraries/

BIBLIOGRAPHY

[128] Arduino, SmoothADC Arduino Library, https://www.arduino.cc/reference/
en/libraries/smoothadc/, [Accessed March 14th 2023.].

[129] Arduino, Oversampling Arduino Library, https://www.arduino.cc/reference/
en/libraries/oversampling/, [Accessed March 14th 2023.].

[130] Arduino, OVS Arduino Library, https://www.arduino.cc/reference/en/
libraries/ovs/, [Accessed March 14th 2023.].

[131] TensorFlow, TensorFlow Lite for Microcontrollers, https://www.tensorflow.
org/lite/microcontrollers/overview, [Accessed March 27th 2023.].

[132] L. Dujić Rodić, I. Stančić, K. Zovko, T. Perković and P. Šolić, Tag estimation method
for aloha rfid system based on machine learning classifiers, Electronics, 11, 16, 2022.

[133] J. Č. Gambiroža, T. Mastelić, I. N. Kosović and M. Čagalj, Lost in data: recognizing
type of time series sensor data using signal pattern classification, International
Journal of Data Science and Analytics, Jul. 2023.

[134] M. Fernández-Delgado, E. Cernadas, S. Barro and D. Amorim, Do we need hundreds
of classifiers to solve real world classification problems?, J. Mach. Learn. Res., 15, 1,
3133–3181, jan 2014.

[135] G. Zaccone and M. Karim, Deep Learning with TensorFlow - Second Edition, 03
2018.

[136] F. Feng, K.-C. Li, J. Shen, Q. Zhou and Y. Xuhui, Using cost-sensitive learning and
feature selection algorithms to improve the performance of imbalanced classification,
IEEE Access, PP, 1–1, 04 2020.

[137] S. Bhatia, 2 - solar radiations, S. Bhatia, editor, Advanced Renewable Energy Systems,
32–67, 2014.

[138] K. Weiss, T. M. Khoshgoftaar and D. Wang, A survey of transfer learning, Journal of
Big Data, 3, 1, 9, May 2016.

[139] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong and Q. He, A
comprehensive survey on transfer learning, Proceedings of the IEEE, 109, 1, 43–76,
2021.

118

https://www.arduino.cc/reference/en/libraries/smoothadc/
https://www.arduino.cc/reference/en/libraries/smoothadc/
https://www.arduino.cc/reference/en/libraries/oversampling/
https://www.arduino.cc/reference/en/libraries/oversampling/
https://www.arduino.cc/reference/en/libraries/ovs/
https://www.arduino.cc/reference/en/libraries/ovs/
https://www.tensorflow.org/lite/microcontrollers/overview
https://www.tensorflow.org/lite/microcontrollers/overview

BIBLIOGRAPHY

119

Curriculum Vitae

Jelena Čulić Gambiroža

Jelena Čulić Gambiroža was born on July 15th 1991, in Split, Croatia. After finishing
high school in Split in 2010, she enrolled to the Computer Engineering/Computer Science
studies at the Faculty of Electrical Engineering, Mechanical Engineering and Naval
Architecture at the University of Split. She received MSc. degree with excellent marks
in 2015, with thesis led by mentor prof. dr. sc. Mario Čagalj. She is the recipient of the
Rector’s Award for Excellence in the academic year 2014-2015.

In February 2015 she has been employed as a student helper at the company Ericsson
Nikola Tesla. In July of the same year she started working as a Software Engineer for the
company. Since November 2018, she has been employed as a Researcher, and she is enrolled
in PhD studies at the Faculty of Electrical Engineering, Mechanical Engineering and Naval
Architecture at the University of Split as Ericsson Nikola Tesla company scholarship holder.
In September 2023 she started a new position as Teaching and Research Assistant at Faculty
of Maritime Studies, University of Split.

Since 2015 she is also employed as university associate at FESB, where she
participated as teaching assistant in multiple courses, including 1st year programming in
C, basic audio/image processing in Matlab, IP communications and software engineering.
Furthermore, she has been mentor and organizer for Ericsson Nikola Tesla Summer Camp
from 2019.

Her scientific interests include big data challenges in Internet of Things as well as data
analytics, including statistical methods and machine learning. During her PhD studies,
she published three (3) scientific papers in A category journals and two (2) full papers in
proceedings with international review. She has also published posters and abstracts. Six (6)
of above mentioned publications are related to her PhD dissertation.

Životopis

Jelena Čulić Gambiroža

Jelena Čulić Gambiroža rod̄ena je 15. srpnja 1991. godine u Splitu. Nakon završene 3.
gimnazije u Splitu, 2010. godine upisuje studij Računarstva na Fakultetu elektrotehnike,
strojarstva i brodogradnje u Splitu. Diplomirala je s izvrsnim uspjehom u lipnju 2015. godine
pod mentorstvom profesora Marija Čaglja. Dobitnica je Rektorove nagrade za izvrsnost u
akademskoj godini 2014./2015.

Od veljače 2015. je zaposlena kao student u kompaniji Ericsson Nikola Tesla, a od
srpnja iste godine radi kao inženjer za razvoj softvera u istoj kompaniji. Od studenog 2018.
godine radi kao istraživač u kompaniji te kao stipendist kompanije upisuje poslijediplomski
studij Elektrotehnike i informacijske tehnologije na Fakultetu elektrotehnike, strojarstva i
brodogradnje u Splitu. U rujnu 2023. godine se zaposlila kao asistent na Pomorskom
fakultetu u Splitu.

Od završetka studija 2015. godine radi i kao vanjski suradnik-asistent na FESB-u gdje je
u okviru nastavnih djelatnosti sudjelovala u nastavi iz predmeta Računala i programiranje,
Multimedija/Multimedijski sustavi, Transmisijski sustavi, Inženjerska grafika i prezentacija,
IP komunikacije i Programsko inženjerstvo. Takod̄er je aktivno sudjelovala u mentoriranju
studenata i organizaciji Ericsson Nikola Tesla ljetnog kampa od 2019. godine.

Znanstveni i stručni interes uključuje razvoj i obradu podataka korištenjem pristupa
temeljenog na podatcima, s naglaskom na primjenu strojnog učenja, te optimizaciju količine
podataka u paradigmi Interneta stvari. Tijekom studija objavila je tri (3) znanstvena rada u
časopisima A kategorije, dva (2) rada u zbornicima s med̄unarodnom recenzijom, te stručne
radove i sažetke u zbornicima skupova. Od navedenih, šest (6) je radova vezano za područje
disertacije.

	Abstract
	Sažetak
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	IoT System Design
	Sensors
	Gateways
	Clouds

	Open Challenges/Research Goals
	Hypothesis
	Dissertation Outline

	Related Work
	Data Reduction in IoT
	Sensors
	Gateways
	Clouds
	Energy Efficient Approaches for Data Velocity and Volume Reduction

	Data Velocity and Volume Reduction Approaches the Research Will Focus On
	Dynamic Monitoring Frequency on a Sensor
	Predicting Final Value from Part of Transient for Sensors with Preheating
	Signal Type Classification - Time Series Data Classification

	Summary

	Overview of Machine Learning Techniques
	Linear and Logistic Regression (LR)
	Linear Regression
	Logistic Regression
	Comparison between Linear and Logistic Regression

	Random Forest (RF)
	Support Vector Machine (SVM)
	K-Nearest Neighbours (kNN)
	Artificial Neural Networks (ANN)
	Multilayer Perceptron (MLP)
	Recurrent Neural Networks (RNN)

	One Class Classification
	One Class Support Vector Machine (OCSVM)
	Isolation Forest (IF)

	Comparison and Summary

	Dynamic Monitoring Frequency for Energy-Efficient Data Collection in IoT
	Problem Statement and Datasets
	Problem Statement
	Baseline Algorithm
	Solution Space
	Datasets

	Statistical and Machine Learning Algorithms
	Statistical Algorithm (S-DMF)
	Machine Learning Algorithm (ML-DMF)

	Performance Comparison between Static and Dynamic Monitoring Frequencies
	Statistical Algorithm (S-DMF) Performance
	Machine Learning Algorithm (ML-DMF) Performance
	Comparison of DMF vs SMF Algorithms

	Implications on Energy Efficiency and Processing Complexity
	Energy Efficiency
	Optimizing the Size of the Training Dataset
	Processing Complexity

	Summary

	Predicting Final Value from Part of Transient for Sensors with Preheating
	Gas Sensor Characterization
	Environment Setup
	Online Period Characteristics
	Sleep Period Characteristics
	Collection of Transients

	LSTM Model Training and Validation
	LSTM Algorithm
	Dataset Stratification and Diversification
	LSTM Parameters Selection
	Frequency Selection for Input Data
	Performance Testing with Scarce Data

	Evaluation and Discussion
	MQ-5 Sensor Results
	MQ-6 Sensor Results
	Discussion on Energy Efficiency

	Summary

	Signal Type Classification - Time Series Data Classification
	Dataset and Methodology
	Dataset
	Methodology

	Comparing Classification Algorithms
	Algorithms Robustness
	Window Size Analysis
	Streaming Data Analysis
	Stored Data Analysis

	Discussion
	Summary

	Dissertation contribution
	Conclusion
	BIBLIOGRAPHY

