Sustav regulacije prekidačkog reluktantnog generatora s uračunatim međuinduktivitetima, remanencijom i gubicima u željezu

Grbin, Šime

Doctoral thesis / Disertacija

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture / Sveučilište u Splitu, Fakultet elektrotehnike, strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:179:919025

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-14

Repository / Repozitorij:

Repository of the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture -University of Split

S V E U Č I L I Š T E U S P L I T U FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE

Šime Grbin

SUSTAV REGULACIJE PREKIDAČKOG RELUKTANTNOG GENERATORA S URAČUNATIM MEĐUINDUKTIVITETIMA, REMANENCIJOM I GUBICIMA U ŽELJEZU

DOKTORSKA DISERTACIJA

S V E U Č I L I Š T E U S P L I T U FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE

Šime Grbin

Sustav regulacije prekidačkog reluktantnog generatora s uračunatim međuinduktivitetima, remanencijom i gubicima u željezu

DOKTORSKA DISERTACIJA

Doktorska disertacija izrađena je na Zavodu za elektroenergetiku, Fakulteta elektrotehnike, strojarstva i brodogradnje u Splitu.

Mentor: Prof. dr. sc. Dinko Vukadinović Rad br. 205

PODACI ZA BIBLIOGRAFSKU KARTICU

Ključne riječi: prekidački reluktantni generator, jednopulsni način rada, elektromagnetska pretvorba energije, klasični model, međuinduktivitet, remanencija, algoritam pomaka i promatranja, gubici

Znanstveno područje: Tehničke znanosti Znanstveno polje: Elektrotehnika Znanstvena grana: Elektroenergetika

Institucija na kojoj je rad izrađen: Sveučilište u Splitu, Fakultet elektrotehnike, strojarstva i brodogradnje

Mentor rada: Prof. dr. sc. Dinko Vukadinović

Broj stranica: 157 Broj slika: 79 Broj tablica: 6 Broj korištenih bibliografskih jedinica: 151 Povjerenstvo za ocjenu doktorske disertacije:

- 1. Prof. dr. sc. Slavko Vujević
- 2. Prof. dr. sc. Viktor Šunde
- 3. Prof. dr. sc. Danko Kezić
- 4. Prof. dr. sc. Mateo Bašić
- 5. Izv. prof. dr. sc. Tonći Modrić

Povjerenstvo za obranu doktorske disertacije:

1. Prof. dr. sc. Slavko Vujević

- 2. Prof. dr. sc. Viktor Šunde
- 3. Prof. dr. sc. Danko Kezić
- 4. Prof. dr. sc. Mateo Bašić
- 5. Izv. prof. dr. sc. Tonći Modrić

Disertacija obranjena dana: 27. rujna 2024.

SUSTAV REGULACIJE PREKIDAČKOG RELUKTANTNOG GENERATORA S URAČUNATIM MEĐUINDUKTIVITETIMA, REMANENCIJOM I GUBICIMA U ŽELJEZU

SAŽETAK

U ovoj doktorskoj disertaciji predstavljen je napredni regulacijski sustav prekidačkog reluktantnog generatora s asimetričnim mosnim pretvaračem čiji je cilj minimizacija gubitaka generatora. Izrađen je napredni model prekidačkog reluktantnog generatora koji uključuje međuinduktivne veze između susjednih namota generatora, gubitke u željezu te remanentni magnetski tok. Svi potrebni ulazni podaci za izradu ovog modela dobiveni su eksperimentalno na laboratorijskoj maketi regulacijskog sustava s prekidačkim reluktantnim generatorom. Rezultati dobiveni korištenjem naprednog simulacijskog modela regulacijskog sustava s prekidačkim reluktantnim generatorom, utemeljenom na naprednom matematičkom modelu ovog stroja koji uključuje međuinduktivitete, remanenciju i gubitke u željezu, najprije su uspoređeni s rezultatima dobivenim korištenjem klasičnog simulacijskog modela, u kojem su zanemareni spomenuti efekti, a potom i s eksperimentalnim rezultatima. Ustanovljeno je da se rezultati dobiveni naprednim modelom regulacijskog sustava bolje slažu s eksperimentalnim rezultatima. Naprednim modelom prekidačkog reluktantnog generatora utvrđena je izražena korelacija između srednje vrijednosti svih faznih struja i gubitaka u stroju. Ova korelacija potvrđena je i eksperimentalno. Budući da se srednja vrijednost svih faznih struja može jednostavno odrediti eksperimentalno, razvijen je algoritam pomaka i promatranja koji se temelji upravo na toj varijabli. Osnovna svrha ovog algoritma je pronaći optimalan položaj rotora pri kojem se uklapaju tranzistori u granama asimetričnog mosnog pretvarača da bi se postigli minimalni gubici u stroju. Algoritam koristi iznose i promjene srednjih vrijednosti svih faznih struja i promjenu položaja rotora pri kojem se uklapaju tranzistori iz prethodne iteracije da bi odredio iznos i smjer u kojem će se navedeni položaj promijeniti u sljedećoj iteraciji.

KLJUČNE RIJEČI

prekidački reluktantni generator, jednopulsni način rada, elektromagnetska pretvorba energije, klasični model, međuinduktivitet, remanencija, algoritam pomaka i promatranja, gubici

CONTROL SYSTEM OF A SWITCHED RELUCTANCE GENERATOR INCLUDING MUTUAL INDUCTANCES, REMANENCE AND IRON LOSSES

ABSTRACT

In this doctoral dissertation, an advanced control system of a switched reluctance generator is presented, the goal of which is to minimize generator losses. An advanced switched reluctance generator model was developed, including mutual inductances, iron losses, and remanent magnetism. All required input data for modeling were obtained experimentally on a laboratory setup of a control system with a switched reluctance generator. The results obtained by using the advanced simulation model of the control system with a switched reluctance generator, which is based on the advanced mathematical model of the machine that includes mutual inductances, remanence, and iron losses, were first compared with the results obtained with the classical simulation model, in which these effects are neglected, and then with the experimental results. It was found that the results obtained with the advanced control system model agreed better with the experimental results. The advanced model of the switched reluctance generator established a strong correlation between the mean value of all phase currents and losses in the machine. This correlation was confirmed experimentally. Since the mean value of all phase currents can be easily determined experimentally a perturb and observe algorithm was developed based on this variable. The main purpose of this algorithm is to find the optimal turn-on rotor position of the transistors in the branches of the asymmetric bridge converter to achieve minimum losses in the machine. The algorithm uses the values and the changes in the mean values of the phase currents and the change in the turn-on position of the transistors from the previous iteration to determine the amount and direction in which the mentioned position will change in the next iteration.

KEYWORDS

switched reluctance generator, single-pulse mode, electromagnetic energy conversion, phase current shaping, classical model, advanced model, perturb and observe algorithm, losses

Zahvala i posveta

Izražavam veliku zahvalnost svom mentoru, prof. dr. sc. Dinku Vukadinoviću, za dugogodišnje strpljenje, neprocjenjive savjete, ideje i stručnu pomoć tijekom izrade ove disertacije.

Zahvaljujem se izv. prof. dr. sc. Mateu Bašiću i dr. sc. Ivanu Grgiću na njihovim stručnim savjetima i pomoći u laboratorijskim istraživanjima.

Posebnu zahvalnost upućujem laborantu Ivici Pengi, dipl. ing. el., za stručnu pomoć prilikom izrade laboratorijske makete.

Na kraju, hvala i mnogobrojnim prijateljima, uključujući i kolege iz Elektre Zadar, za pruženu podršku.

Disertacija je posvećena mojim roditeljima Nedi i Emilu.

SADRŽAJ

SAŽETAKiv
ABSTRACTv
SADRŽAJ vii
POPIS TABLICAx
POPIS SLIKAxi
POPIS OZNAKA I KRATICA
1. UVOD
1.1. Motivacija1
1.2. Pregled dosadašnjih istraživanja3
1.3. Znanstveni doprinos doktorske disertacije6
1.4. Struktura doktorske disertacije7
2. OPIS RADA PREKIDAČKOG RELUKTANTNOG GENERATORA9
2.1. Konfiguracije prekidačkog reluktantnog generatora9
2.2. Asimetrični mosni pretvarač za upravljanje prekidačkim reluktantnim generatorom11
2.3. Elektromagnetska pretvorba energije prekidačkog reluktantnog generatora14
2.4. Regulacija napona asimetričnog mosnog pretvarača upravljanjem prekidačkim
reluktantnim generatorom u jednopulsnom načinu rada21
3. KLASIČNI MATEMATIČKI MODEL PREKIDAČKOG RELUKTANTNOG
GENERATORA S ASIMETRIČNIM MOSNIM PRETVARAČEM
3.1. Prikaz magnetskih karakteristika drugom parcijalnom sumom Fourierovog reda31
3.2. Simulacija klasičnog modela u Matlab/Simulinku
4. NAPREDNI MATEMATIČKI MODEL PREKIDAČKOG RELUKTANTNOG
GENERATORA S ASIMETRIČNIM MOSNIM PRETVARAČEM43
4.1. Određivanje remanentnog magnetskog toka prekidačkog reluktantnog stroja43

4.2. Razdioba fazne struje po parametrima nadomjesne sheme prekidačkog reluktantnog stroja
4.3. Određivanje međuinduktiviteta između faza prekidačkog reluktantnog stroja57
4.4. Simulacija naprednog modela u Matlab/Simulinku61
4.5. Krivulje magnetiziranja prekidačkog reluktantnog generatora64
5. EKSPERIMENTALNA VALIDACIJA NAPREDNOG SIMULACIJSKOG MODELA69
5.1. Laboratorijska maketa sustava s prekidačkim reluktantnim generatorom
5.2. Eksperimentalno određivanje područja rada reguliranog prekidačkog reluktantnog
5.3 Usporedba simulacijskih rezultata s eksperimentalnim
6. ALGORITAM POMAKA I PROMATRANJA ZA TRAZENJE MAKSIMALNE
KORISNOSTI SUSTAVA S PREKIDACKIM RELUKTANTNIM GENERATOROM89
6.1. Korelacija varijabli stroja i gubitaka sustava s prekidačkim reluktantnim generatorom89
6.2. Algoritam za traženje maksimalne korisnosti sustava s prekidačkim reluktantnim
generatorom
7. ZAKLJUČAK
LITERATURA107
Prilog A118
Parametri prekidačkog reluktantnog stroja118
Parametri pogonskog istosmjernog stroja119
Prilog B120
Koeficijenti aproksimacijskih funkcija120
Prilog C121
Algoritam za filtriranje mjernih podataka121
Prilog D125

Sklopni gubici tranzistora	125
Gubici vođenja tranzistora i dioda	125
Gubici pretvarača	127
Prilog E	130
Radne točke prekidačkog reluktantnog generatora s pripadajućim varijablama kandidatima	a 130
Životopis	135
Curriculum Vitae	136

POPIS TABLICA

Tablica 5.1.	Otpor trošila, položaj uklapanja, brzina vrtnje, napon između sabirnica te izlazna	
	snaga generatora zabilježeni u realiziranim eksperimentima8	30
Tablica 5.2.	Koeficijenti točnosti K za pojedine faze SRG-a i za radne točke prikazane u Tablici	
	5.1	32
Tablica 5.3.	Usporedba ulaznih snaga	\$5
Tablica 6.1.	Položaj uklapanja dobiveni algoritmom pomaka i promatranja – eksperimenti i	
	simulacije9)9
Tablica D.1.	. Otpor trošila, položaj uklapanja, brzina vrtnje, napon između sabirnica te gubici	
	zabilježeni u realiziranim eksperimentima12	27
Tablica E.1.	Radne točke SRG-a s pripadajućim varijablama kandidatima	\$0

POPIS SLIKA

<i>Slika 2.1.</i>	Trofazni 12/8 i 6/4 prekidački reluktantni strojevi9
Slika 2.2.	Četverofazni 8/6 prekidački reluktantni stroj10
Slika 2.3.	Potpuno poravnat (pp) i potpuno neporavnat položaj (pn) statorskog i rotorskog pola 10
Slika 2.4.	Sustav SRG-a s simetričnim mosnim pretvaračem, kondenzatorom, trošilom i izvorom za početnu uzbudu
Slika 2.5. I	Magnetiziranje i razmagnetiziranje faze SRG-a asimetričnim mosnim pretvaračem12
Slika 2.6. I	Elektromagnetski moment u generatorskom načinu rada13
Slika 2.7. I	Redoslijed magnetiziranja faza za generatorski način rada četverofaznog 8/6 SRM-a 14
Slika 2.8. (Ovisnost induktiviteta faznog namota o položaju statorskog i rotorskog pola za linearni magnetski krug
Slika 2.9. I	Magnetiziranje faze stroja uz zakočen rotor u položaju θ_T
Slika 2.10.	Magnetiziranje faze stroja uz pomicanje rotora od položaja θ_{pp} do θ_T 16
Slika 2.11.	Razmagnetiziranje faze stroja uz pomicanje rotora od položaja θ_T do θ_{pn}
Slika 2.12.	Cjeloviti ciklus magnetiziranja i razmagnetiziranja
Slika 2.13.	Pretvorba magnetske energije u mehaničku
Slika 2.14.	. Cjeloviti ciklus magnetiziranja i razmagnetiziranja uz magnetsko zasićenje i pretvorbu magnetske energije u mehaničku21
Slika 2.15.	Pojednostavljena blokovska shema regulacijskog sustava s prekidačkim reluktantnim generatorom
Slika 3.1.	Nadomjesna shema jedne faze SRG-a spojene na jednu granu asimetričnog mosnog pretvarača
Slika 3.2.	Oblikovanje fazne struje kod jednopulsnog načina rada SRG-a27
Slika 3.3. 1	Nadomjesna shema klasičnog modela SRG-a, koji je opterećen radnim trošilom R _t pri čemu je SRG napajan asimetričnim mosnim pretvaračem

<i>Slika 3.4. Shema električnog kruga za provođenje eksperimenta istosmjerne uzbude</i>
<i>Slika 3.5. Struja i napon kod eksperimenta istosmjerne uzbude pri položaju</i> $\theta = 0^{\circ}$
Slika 3.6. Aproksimirani magnetski tok i eksperimentalno određeni u ovisnosti o faznoj struji za
tri položaja
Slika 3.7. Magnetski tok jedne faze u funkciji položaja rotora i fazne struje
Slika 3.8. Elektromagnetski moment jedne faze SRG-a u ovisnosti o kutu zakreta rotora i faznoj
<i>struji</i>
Slika 3.9. Blokovska shema jedne faze za klasični model SRG-a
Slika 3.10. Simulacijski model jedne faze za klasični model SRG-a u Matlab/Simulinku
Slika 3.11. Blokovska shema simulacije SRG-a koji je opterećen radnim trošilom R_t pri čemu je
SRG napajan asimetričnim mosnim pretvaračem40
Slika 3.12. Simulacijski model SRG-a koji je opterećen radnim trošilom R_t pri čemu je SRG
napajan asimetričnim mosnim pretvaračem u Matlab/Simulinku41
Slika 4.1. Magnetiziranje i razmagnetiziranje faze stroja uz prethodnu eliminaciju remanencije 44
Slika 4.2. Magnetiziranje i razmagnetiziranje faze stroja bez prethodne eliminacije remanencije
Slika 4.3. Razmagnetiziranje faze stroja s prethodnom eliminacijom remanencije i bez nje 45
Slika 4.4. Eksperimentalno određeni remanentni magnetski tok ulančen razmatranom fazom i
njegova linearna aproksimacija46
Slika 4.5. Smjer silnica magnetskog toka u statorskim polovima
Slika 4.6. Promjena remanentnog magnetskog toka pod utjecajem magnetskog toka svih faza 48
Slika 4.7. Nadomjesna shema jedne faze SRG-a koja uključuje remanentni magnetski tok spojen
na jednu granu asimetričnog mosnog pretvarača50
Slika 4.8. Nadomjesna shema jedne faze SRG-a spojene na jednu granu asimetričnog mosnog
pretvarača s uključenim otporom gubitaka u željezu51
Slika 4.9. Magnetiziranje i razmagnetiziranje faze stroja uz zanemarive gubitke u željezu

Slika 4.10. Magnetiziranje faze stroja zakočenog SRG-a uz prisutne gubitke u željezu a) i tokovi
struja u nadomjesnoj shemi b)53
Slika 4.11. Razmagnetiziranje faze stroja zakočenog SRG-a uz prisutne gubitke u željezu a) i
tokovi struja u nadomjesnoj shemi b)54
Slika 4.12. Magnetiziranje i razmagnetiziranje faze zakočenog SRG-a uz prisutne gubitke u želiezu
$\mathbf{C} = 1 + $
Slika 4.13. Ovisnost struje kroz induktivitet o polozaju i magnetskom toku
Slika 4.14. Ovisnost struje kroz nadomjesni otpor gubitaka u željezu o položaju i magnetskom toku
Slika 4.15. Elektromagnetski moment jedne faze u ovisnosti o kutu zakreta rotora i faznoj struji
dobiven iz pregledne tablice $i_L(\theta, \psi)$
Slika 4.16. Položaj rotora kod kojeg je magnetski otpor minimalan između prve i druge faze 58
Slika 4.17. Fazna struja i inducirani napon kod eksperimenta istosmjerne uzbude za procjenu
međuinduktiviteta pri položaju $\theta = -7,5^{\circ}$
Slika 4.18. Aproksimirani međuinduktivitet između razmatrane i prethodno magnetizirane faze u ovisnosti o položaju rotora
Slika 4.19. Nadomjesna shema jedne faze SRG-a koja uključuje međuinduktivitet, remanentni
magnetski tok i gubitke u željezu spojena na jednu granu asimetričnog mosnog
pretvarača61
Slika 4.20. Blokovska shema jedne faze za napredni model SRG-a
Slika 4.21. Simulacijski model jedne faze za napredni model SRG-a u Matlab/Simulinku
Slika 4.22. Krivulje magnetiziranja za sve četiri faze pri opterećenju od a) 364 W i b) 889 W 66
Slika 4.23. Krivulje magnetiziranja za različite napone
Slika 4.24. Krivulje magnetiziranja za različite položaje uklapanja tranzistora asimetričnog
mosnog pretvarača
Slika 4.25. Krivulje magnetiziranja za različite brzine vrtnje stroja

Slika 5.1. Blokovska shema regulacijskog sustava s prekidačkim reluktantnim generatorom70
Slika 5.2. Laboratorijska maketa regulacijskog sustava s prekidačkim reluktantnim generatorom
Slika 5.3. Odstupanje napona između sabirnica od referentne vrijednosti
Slika 5.4. Moment praznog hoda M_0
Slika 5.5. Područje motorskog i generatorskog načina rada za prvu fazu stroja kada se rotor vrti u smjeru kazaljke na satu76
Slika 5.6. Model SRG-a koji je opterećen radnim trošilom R_t pri čemu je SRG napajan
asimetričnim mosnim pretvaračem, prilagođen za usporedbu s eksperimentima78
Slika 5.7. Usporedba eksperimentalno dobivene fazne struje sa simulacijski dobivenim faznim strujama
Slika 5.8. Relativna razlika između ulazne snage dobivene eksperimentalno i simulacijskim modelima
Slika 6.1. Ilustracija faktora uzbude na valnom obliku fazne struje SRM-a
Slika 6.2. Gubici SRG-a i varijable kandidati u ovisnosti u položaju uklapanja za radne točke a)
$n = 2000 \ r/min, u = 200 \ V \ i \ R_t = 110 \ \Omega \ i \ b) \ n = 3000 \ r/min, u = 250 \ V \ i \ R_t = 45 \ \Omega91$
Slika 6.3. Princip rada algoritma za traženje maksimalne korisnosti sustava s prekidačkim reluktantnim generatorom
Slika 6.4. Dijagram toka algoritma za traženje maksimalne korisnosti sustava s prekidačkim reluktantnim generatorom95
Slika 6.5. Simulacijski model algoritma za traženje maksimalne korisnosti sustava s prekidačkim reluktantnim generatorom97
Slika 6.6. θ_u određen algoritmom pomaka i promatranja za različite k_p - simulacija naprednim modelom
Slika 6.7. Promjena θ_u u dinamici tijekom prelaska iz radne točke 6 na radnu točku 12 100
Slika 6.8. Promjena θ_u u dinamici tijekom prelaska iz radne točke 15 na radnu točku 16 101

Slika 6.9. Promjena θ_u u dinamici tijekom prelaska iz radne točke 11 na radnu točku 910
Slika 6.10. Promjena θ_u u dinamici tijekom prelaska iz radne točke 14 na radnu točku 11 10
Slika A.1. Fotografija statora SRM-a a) i skica poprečnog presjeka statora b)11
Slika A.2. Fotografija rotora SRM-a i skica poprečnog presjeka rotora b)
Slika C.1. Prikaz funkcije $y = f(x)$ koja je definirana 1. i 2. linijom programskog koda
Slika C.2. Prikaz točaka funkcije $y = f(x)$ prije (crvene točke) i nakon (plava točka) što se 5. linija koda izvrši nad drugim podatkom funkcije $y = f(x)$
Slika C.3 Prikaz točaka funkcije $y = f(x)$ prije (crvene točke) i nakon (plave točke) što se
unutarnja for petlja izvrši nad svim točkama funkcije $y = f(x)$
Slika C.4. Prikaz točaka funkcije $y = f(x)$ prije (crvene točke) i nakon (plave točke) što se vanjska
for petlja izvrši 5 puta nad svim točkama funkcije $y = f(x)$
Slika C.5. Prikaz točaka funkcije $y = f(x)$ bez primjene (plave točke) i uz primjenu (žute točke)
while petlje
Slika D.1. Izlazna karakteristika tranzistora tipa IRG4PH50UD12
Slika D.2. Izlazna karakteristika poredne diode tranzistora tipa IRG4PH50UD12

POPIS OZNAKA I KRATICA

APC	jednopulsno oblikovanje fazne struje (od engl. Angle Position Control)
a_{ml}	koeficijenti aproksimacijskog polinoma za ψ_m
a_{mtl}	koeficijenti aproksimacijskog polinoma za L_{mt}
a_{pn}	koeficijent aproksimacijske linearne funkcije za ψ_{pn}
a_{ppl}	koeficijenti aproksimacijskog polinoma za ψ_{pp}
С	kapacitet kondenzatora između sabirnica
C_l	koeficijenti Fourierovog reda
CCC	histerezno oblikovanje fazne struje (od engl. Current Chopping Control)
D_s	dioda koja osigurava minimalan napon između sabirnica
d	impuls za sklapanje tranzistora
d_r	promjer rotora
d_{su}	unutarnji promjer statora SRM-a
d_{sv}	vanjski promjer statora SRM-a
е	inducirana elektromotorna sila
engl.	engleski
e_{mt}	napon koji prethodno magnetizirana faza inducira u razmatranoj
e_r	elektromotorna sila koju inducira promjena remanentnog magnetskog toka u
	razmatranoj fazi
F_n	<i>n</i> -ta faza stroja
FEA	analiza konačnim elementima (od engl. Finite Element Analysis)
g_P	relativna razlika između ulazne snage dobivene eksperimentalno i simulacijskim
	modelima
I _{ef,D}	efektivna vrijednost struje diode
I _{ef,T}	efektivna vrijednost struje tranzistora
Isr	srednja vrijednost svih faznih struja SRG-a
Isr,D	srednja vrijednost struje diode
$I_{sr,T}$	srednja vrijednost struje tranzistora
i_0	struja sabirnica asimetričnog mosnog pretvarača
Ief	usrednjena efektivna vrijednost faznih struja

ic	struja kondenzatora između sabirnica
İf	fazna struja
İ _{f,exp}	eksperimentalno dobivena fazna struja
İ _{f,T}	fazna struja u točki T
İ f,simk	fazna struja dobivena simulacijom pomoću klasičnog modela
<i>İ</i> fM	fazna struja za vrijeme magnetiziranja
İ _{f,simn}	fazna struja dobivena simulacijom pomoću naprednog modela
i_{fR}	fazna struja za vrijeme razmagnetiziranja
IGBT	(od engl. insulated gate bipolar transistor)
i_L	struja kroz induktivitet faznog namota
<i>i</i> _m	struja kroz nadomjesni otpor gubitaka u željezu
\dot{l}_{S}	fazna struja koja teče kroz namot prethodno magnetizirane u odnosu na
	razmatranu fazu
<i>i</i> _{iskl}	struja pri kojoj se tranzistori isklapaju
i_t	struja trošila
j	broj faze stroja
Κ	koeficijent točnosti modela
K_i	integracijsko pojačanje PI regulatora
K_p	proporcionalno pojačanje PI regulatora
k	sklopno stanje tranzistora u grani pretvarača
k_p	koeficijent proporcionalnosti između promjene srednje vrijednosti svih faznih
	struja i promjene položaja uklapanja tranzistora
L	induktivitet faznog namota stroja
L_{mt}	međuinduktivitet između razmatrane i prethodno magnetizirane faze
l	stupanj funkcije
L_{pp}	induktivitet faznog namota stroja pri položaju θ_{pp}
L_{pn}	induktivitet faznog namota stroja pri položaju θ_{pn}
М	elektromagnetski moment generatora
M_{f}	elektromagnetski moment jedne faze SRG-a
MOSFET	(od engl. metal oxide semiconductor field effect transistor)

M_m	mehanički moment generatora
M_0	moment praznog hoda
n	brzina vrtnje SRG-a
pn	potpuno nepreklapanje statorskog i rotorskog pola
pp	potpuno preklapanje statorskog i rotorskog pola
Р	izlazna snaga SRG-a
P_g	gubici SRG-a
P_n	nazivna snaga SRG-a
P_p	gubici pretvarača
P_{skl}	sklopni gubici tranzistora
P_u	ulazna snaga SRG-a
PWM	pulsno-širinska modulacija (od engl. Pulse Width Modulation)
q_e	korak uzorkovanja napona i fazne struje kod eksperimenta istosmjerne uzbude
<i>q</i>	korak uzorkovanja varijabli u pogonu i simulacijama SRG-a
q_r	broj mjerne točke iz kojih su određeni koeficijenti korelacije
q_{sr}	redni broj iteracije usrednjavanja faznih struja
R	otpor faznog namota stroja
r	koeficijent korelacije
r _D	otpor vođenja diode
R_m	nadomjesni otpor gubitaka u željezu
R_t	otpor trošila
r _T	otpor vođenja tranzistora
SRM	prekidački reluktantni stroj (od engl. Switched Reluctance Machine)
SRG	prekidački reluktantni generator (od engl. Switched Reluctance Generator)
Т	vremenski interval protjecanja struje prilikom prolaska rotorskog pola
<i>t</i> _m	vrijeme magnetiziranja faze stroja
t_p	trenutak početka prijelazne pojave
t_{r1}	vrijeme od trenutka isklapanja tranzistora do trenutka kad rotorski pol dođe u
	položaj 30°
T_s	period uzorkovanja

T_t	vrijeme trajanja eksperimenta istosmjerne uzbude
и	napon između sabirnica asimetričnog mosnog pretvarača
u_{CE0}	napon praga tranzistora
u_{D0}	napon praga diode
U_{dc}	napon na akumulatorskim baterijama
u_L	pad napona na induktivitetu faznog namota stroja
Umax	gornja granica napona između sabirnica
Umin	minimalan napon između sabirnica
Uref	referentni napon između sabirnica
u_i	inducirani napon na stezaljkama namota
U_0	početni napon na kondenzatoru između sabirnica
V	varijabla kandidat
W	magnetska energija jedne faze
W_g	generirana energija
$W_{g,m}$	energija pretvorena iz mehaničke u magnetsku za vrijeme magnetiziranja
$W_{g,r}$	energija pretvorena iz mehaničke u magnetsku za vrijeme razmagnetiziranja
W _{meh}	mehanička energija
W_u	energija pretvorena iz magnetske u električnu za vrijeme razmagnetiziranja
α_r	luk rotorskog pola
α_s	luk statorskog pola
3	faktor uzbude
ε _u	srednje vrijednosti faktora uzbude svih faza
ψ	ulančeni magnetski tok jedne faze SRG-a
ψ_e	magnetski tok određen iz prvog eksperimenta istosmjerne uzbude kod
	određivanja remanentnog magnetskog toka
ψe'	magnetski tok određen iz drugog eksperimenta istosmjerne uzbude kod
	određivanja remanentnog magnetskog toka
Ψ_m	magnetski tok jedne faze SRG-a pri položaju θ_m
Ψ_{mt}	magnetski tok pojedine faze nastao međuindukcijom od susjedne faze
Ψ_{pn}	magnetski tok jedne faze SRG-a pri položaju θ_{pn}

Ψ_{pp}	magnetski tok jedne faze SRG-a pri položaju θ_{pp}
Ψ_T	magnetski tok jedne faze SRG-a pri položaju θ_T
Ψ_{rmax}	maksimalni remanentni magnetski tok
Ψ_{rp}	remanentni magnetski tok rotorskog pola
Ψr	remanentni magnetski tok
ω	kutna brzina vrtnje SRG-a
θ	položaj rotora
θ_0	položaj rotora pri kojem fazna struja pada na nulu
θ_i	položaj rotora pri kojem se isklapaju tranzistori pojedine grane
θ_m	položaj između <i>pp</i> i <i>pn</i>
θ_{mag}	kut magnetiziranja
θ_{pn}	položaj potpunog nepreklapanja statorskog i rotorskog pola
θ_{pp}	položaj potpunog preklapanja statorskog i rotorskog pola
θ_T	položaj rotora u točki T
Θ_u	položaj rotora pri kojem se uklapaju tranzistori pojedine grane
$\theta_{u,g}$	granični položaj rotora pri kojem se uklapaju tranzistori pojedine grane

1. UVOD

1.1. Motivacija

Za odvajanje željeza od magneta potrebno je uložiti mehaničku energiju. U slučaju elektromagneta, dio te mehaničke energije može se pretvoriti u električnu energiju. Ovaj koncept leži u osnovi rada prekidačkog reluktantnog generatora (engl. *Switched Reluctance Generator – SRG*). Osnovni cilj ove doktorske disertacije je razviti računalni model pretvorbe mehaničke energije u električnu pomoću SRG-a s uračunatim međuinduktivitetima, remanentnim magnetskim tokom i gubicima u željezu. Također, istraživanje će se usredotočiti na razvoj sustava regulacije prekidačkog reluktantnog generatora koji tu pretvorbu ostvaruje na najučinkovitiji način.

Geometrijska jednostavnost, nepostojanje namota ili permanentnih magneta na pomičnom dijelu, manji trošak izrade, veća pouzdanost i robusnost u odnosu na druge električne strojeve glavne su značajke prekidačkog reluktantnog stroja (engl. *Switched Reluctance Machine – SRM*) [1, 2]. Budući da se namoti ne nalaze na pomičnom dijelu nego samo na statoru stroja olakšano je hlađenje jer se pomični dio ne zagrijava zbog gubitaka u bakru. SRM nema permanentnih magneta ili namota na pomičnom dijelu, što pojednostavljuje konstrukciju, ali za razliku od ostalih električnih strojeva, zahtijeva pretvarač. Posljedica geometrije SRM-a i zasićenja željeza je magnetska nelinearnost koja uzrokuje značajne propade momenta. Moguće ih je ublažiti primjenom različitih algoritama upravljanja strojem pomoću pretvarača. Sustav s prekidačkim reluktantnim strojem zahtijeva točno poznavanje pozicije rotora da bi se pravovremeno magnetiziralo odgovarajuću fazu. Zbog jednostavne konstrukcije, proizvodnja SRM-a je jeftinija od ostalih električnih strojeva, ali njegovu ekonomsku isplativost dovodi u pitanje činjenica da redovito zahtijeva poluvodički pretvarač i često digitalni enkoder za rad.

SRM se u pravilu projektira za kružno gibanje, iako može biti projektiran i za linearno [3-10]. SRM projektiran za kružno gibanje ima stator i rotor na kojima se nalaze istaknuti polovi s tim da broj polova na statoru i rotoru u pravilu nije isti. Na svakom od statorskih polova nalazi se namot, a rotorski su polovi bez namota. Rotor ima istaknute polove tako da se postigne maksimalna promjena induktiviteta, odnosno reluktancije duž oboda rotora koliko to geometrija i namjena stroja dozvoljavaju. SRM nalazi primjene i kao motor i kao generator. Tako se, na primjer, u automobilskoj industriji SRM primjenjuje kao klasični motor [11-16] ili kao motor integriran u kotaču [17-20]. Primjerice, tvrtka Nidec je uspješno primijenila SRM u klasičnom pogonu Land Rovera [21]. Jedna od ključnih prednosti SRM-a, naglašena u tom primjeru, jest njegov relativno velik potezni moment, što omogućuje korištenje SRM-a bez potrebe za mjenjačem. Osim automobilske industrije, tvrtka Nidec je također primijenila SRM kao pogonski motor u industrijskim ventilatorima, centrifugalnim pumpama, vijčanim kompresorima i transportnim trakama [22]. Zahvaljujući svojoj robusnoj konstrukciji, SRM se koristi u zahtjevnim okruženjima kao što su rudnici [23] i prijenos rasutog tereta [24]. Važno je napomenuti da većina gubitaka u SRM-u nastaje u statoru, što olakšava sustav hlađenja u usporedbi s drugim električnim strojevima. Tako se, npr., električni strojevi koji se koriste za zavarivanje često pregriju u kratkom vremenu, a SRM ostaje hladan na dodir čak i nakon dugotrajne upotrebe [24]. SRM nalazi svoju primjenu i u pumpama, klima uređajima, kompresorima i sl. [23]. Ipak, danas još uvijek nema masovne primjene SRM-ova, a njihovih proizvođača je tek nekoliko [22, 25-29].

SRM se razmatra za upotrebu u generatorskom načinu rada u različitim područjima. Primjenjuje se za rad u vjetroagregatima [30-44], kao elektropokretač i generator u aeroindustriji [45-50] te kao generator u elektranama zasnovanim na energiji morskih valova [8-10]. Jedna od ključnih prednosti SRG-a je što može raditi u širokom rasponu brzina i ne zahtijeva mjenjač [51]. Komercijalna primjena SRG-a ostvarena je u vjetrogeneratoru *Eco Whisper Turbine* snage 20 kW [52]. U aeroindustriji se kao prednost ističe pouzdanost prilikom kvara. Ako otkaže npr. jedna faza, ostale faze mogu nastaviti generirati energiju, što znači da električni sustavi zrakoplova dalje dobivaju opskrbu električnom energijom unatoč kvaru. Problem nastaje prilikom kratkog spoja jer tada dolazi do razmagnetiziranja stroja. Nakon uklanjanja uzroka kratkog spoja, potrebno je ponovno uspostaviti uzbudu SRG-a pomoću vanjskog izvora napajanja. Za to vrijeme električni sustavi u zrakoplovu su bez opskrbe energijom iz SRG-a [23].

Kod klasičnog modela SRG-a u pravilu se zanemaruju međuinduktivitet, remanentni magnetski tok i gubici u željezu. Kako je SRG geometrijski simetričan, pretpostavlja se da su valni oblici faznih struja također simetrični. U radovima [53, 54] je pokazano da zbog utjecaja međuinduktiviteta može doći do nesimetrija između valnih oblika faznih struja. Zbog toga faze stroja mogu biti različito opterećene te moment stroja nije ravnomjeran. U radu [55] pokazano je da može doći do pogrešne procjene korisnosti stroja ako se međuinduktivitet zanemari. Osim

međuinduktiviteta u pravilu se zanemaruju i gubici u željezu što dodatno doprinosi pogrešnoj procjeni korisnosti stroja.

Sustav s SRG-om, u pravilu, zahtijeva izvor za početnu uzbudu. Prema radovima [54-57] SRG je moguće magnetizirati remanentnim magnetskim tokom, ali nije predstavljen model koji ga uzima u obzir. U radu [56] je naglašeno da je remanentni magnetski tok teško predvidjeti i modelirati.

Motivacija za izradu ove doktorske disertacije je uočena potreba za razvojem naprednog modela SRG-a s uračunatim međuinduktivnim vezama između susjednih faza, remanentnim magnetskim tokom i gubicima u željezu. Takav model omogućio je analizu gubitka stroja te razvoj naprednog modela sustava regulacije napona između sabirnica asimetričnog mosnog pretvarača pri maksimalnoj korisnosti SRG-a u širokom području promjena brzina vrtnje, opterećenja i napona između sabirnica.

1.2. Pregled dosadašnjih istraživanja

Klasični model SRM-a temelji se na naponskoj jednadžbi za jednu fazu stroja uz zanemarenje međuinduktiviteta, remanentnog magnetskog toka i gubitaka u željezu. Modeli svih faza stroja daju ukupni model SRM-a. Da bi se takav model napravio potrebno je poznavati radni otpor faznih namota i magnetske karakteristike stroja. Radni otpor se može relativno lako izmjeriti U-I metodom. Magnetske karakteristike podrazumijevaju poznavanje magnetskog toka ili induktiviteta faze za različite vrijednosti faznih struja i položaja rotora. Mogu se odrediti metodom konačnih elemenata (engl. *Finite Element Analysis – FEA*) [4, 7, 12, 13, 17, 38, 41, 42, 47-49, 57-80] ili eksperimentalno [6, 54, 55, 59, 60, 72, 81-96]. Prema radu [82] postoji pet metoda pomoću kojih je moguće eksperimentalno odrediti magnetske karakteristike SRM-a: istosmjerna metoda, izmjenična metoda, kombinirana metoda, metoda prekidanja struje i momentna metoda.

Ovisnost magnetskog toka ili induktiviteta o faznoj struji i položaju rotora najčešće se zapisuje kao druga parcijalna suma Fourierovog reda [18, 20, 61, 65, 67, 70, 71, 76, 93, 97-99]. Osim toga moguće ju je zapisati drugim jednadžbama [30, 58, 68, 84, 85, 100-103], spremiti u preglednu tablicu [48, 59, 62, 100] ili povezati neuronskom mrežom [65, 92]. Također, moguće je u svakoj

iteraciji izvođenja programa za izračun trenutnih vrijednosti varijabli stroja, napraviti proračun magnetskog toka *FEA* metodom [53, 59, 60].

U većini modela, gubici u željezu se zanemaruju iako mogu iznositi do 50 % gubitaka stroja [74]. Ako su poznate karakteristike materijala od kojeg je stroj napravljen, moguće je provesti proračun magnetskog polja *FEA* metodom te odrediti gubitke u željezu [60, 63, 69, 74, 80, 104, 105]. U radovima [5, 6, 89, 106, 107] predloženo je da se model faze SRM-a nadogradi uvođenjem nadomjesnog otpora u paralelu s induktivitetom faze te se tako modeliraju gubici u željezu. Za ovu metodu nije potrebno poznavati karakteristike materijala. U radovima [5, 6, 106] nadomjesni otpor gubitaka u željezu ovisi o faznoj struji, naponu na namotu, položaju rotora i frekvenciji fazne struje. Kako je ovisnost o četiri varijable vrlo kompleksno ustanoviti, u radu [89] je predloženo definiranje kvazi-efektivne vrijednosti fazne struje kojom bi se otpor gubitaka u željezu sveo na ovisnost o tri varijable: kvazi-efektivnoj vrijednosti fazne struje, naponu na namotu te položaju rotora.

Remanentni magnetski tok zanemaren je u svim dosadašnjim radovima. U radu [56] istaknuto je da je remanentni magnetski tok teško predvidjeti i modelirati, što ukazuje na potrebu za daljnjim istraživanjima.

Kod izrade modela SRG-a, u većini radova međuinduktivitet se zanemaruje. Međutim, u radovima [53, 54] pokazano je da međuinduktivitet može uzrokovati nesimetrije između faznih struja. Ako je faza stroja magnetizirana u istom smjeru kao i susjedna faza, onda se magnetski tok susjedne faze koji se zatvara kroz razmatranu fazu oduzima od toka koji stvara razmatrana faza. Ako je faza stroja magnetizirana u suprotnom smjeru od susjedne faze, onda se magnetski tok susjedne faze koji se zatvara kroz razmatranu fazu zbraja s magnetskim tokom koji stvara razmatrana faza. Poželjno je postići konfiguraciju kod koje se magnetski tok susjedne faze zbraja s magnetskim tokom razmatrane faze jer se tada postiže da su magnetski tokovi svih faza simetrični. To je moguće postići ako se svaka faza stroja magnetizira u suprotnom smjeru od susjednih faza. Ovakvu konfiguraciju moguće je postići kod SRM-a koji ima neparan broj faza. Budući da se značajan dio magnetskog toka pojedine faze zatvara preko polova susjednih faza, potrebno je u modelu SRG-a uzeti u obzir međuinduktivnu vezu. Naponu na namotu razmatrane faze opire se inducirana elektromotorna sila nastala promjenom svih magnetskih tokova koji se zatvaraju kroz tu fazu. Iz tog razloga, u modelu je potrebno uzeti u obzir promjenu magnetskog toka po vremenu koji stvara susjedna faza u razmatranoj, a ne njegov iznos. U radovima [54, 55, 58, 76] su napravljeni modeli koji međuinduktivnu vezu uzimaju u obzir. U radovima [55, 76]

4

napravljen je model koji uzima u obzir promjenu međuinduktiviteta po vremenu pa posljedično i magnetskog toka koji stvara susjedna faza. U radovima [54, 58] napravljen je model u kojem se integrira napon na faznom namotu umanjen za pad napona na radnom otporu. Tako se dobiva određeni magnetski tok na koji se zbraja magnetski tok koji se zatvara kroz razmatranu fazu pod utjecajem struja susjednih faza. Iz tako dobivenog magnetskog toka i iz položaja statora dobiva se fazna struja. Dakle, u tim radovima nije uzeta u obzir promjena magnetskog toka po vremenu uslijed međuinduktivne veze, nego samo iznos magnetskog toka.

Većina radova proučava rad SRG-a pri malim brzinama vrtnje, odnosno pri brzinama vrtnje kod kojih je inducirana elektromotorna sila manja od napona između sabirnica pretvarača. U ovom je slučaju moguće oblikovati faznu struju tako da se tranzistori jedne grane više puta uklope i isklope u jednom periodu vođenja te tako dobiti tražene vrijednosti referentnih varijabli [12, 30-33, 35-37, 39-41, 43, 44, 49, 67, 84-86, 91, 108-116]. To nije moguće kod brzina kod kojih je inducirana elektromotorna sila veća od napona između sabirnica pretvarača. U ovom slučaju tranzistore jedne grane moguće je samo jednom uklopiti i isklopiti u jednom periodu vođenja čime se postiže jednopulsni način rada stroja [12, 34, 48, 64, 71, 75, 84, 86, 91, 102, 103, 115, 117, 118].

Od sustava koji sadrže SRG može se tražiti da na određenoj vrijednosti održavaju optimalnu brzinu vrtnje stroja [36, 37, 40, 41, 49, 68], optimalnu izlaznu snagu [31, 32, 34, 35, 40, 43, 68, 91, 115, 116], napon između sabirnica pretvarača [9, 39, 44, 48, 64, 67, 84, 86, 90, 102, 103, 109-113, 117], srednju vrijednost struje sabirnica [85, 114] ili moment [30, 33]. Referentna vrijednost i mjereni signali dovođe se do regulatora koji generira upravljačke signale za SRG. Taj regulator može biti ostvaren kao PI [31, 39, 40, 44, 48, 49, 68, 84, 86, 91, 109-112, 114, 116, 118-120], pregledna tablica koja daje optimalne položaje rotora pri kojem se tranzistori uklapaju i isklapaju [71, 75] ili regulator temeljen na neizrazitoj logici [34, 36, 41, 117, 121]. U regulacijskom sustavu SRG-a koji radi u jednopulsnom načinu rada potrebno je odabrati položaje rotora pri kojima se tranzistori razmatrane grane uklapaju i isklapaju. Više kombinacija položaja rotora pri kojem se tranzistori uklapaju i isklapaju mogu dati željenu vrijednost regulirane varijable što otvara mogućnost odabira optimalne kombinacije. U [90] razvijena je metoda koja se temelji na optimalnom upravljanju magnetskim tokom prema potrebnoj izlaznoj snazi. U radu je pretpostavljeno da se magnetski tok mijenja linearno u ovisnosti o faznoj struji i položaju, što dovodi u pitanje primjenu takvog načina upravljanja jer SRM radi u dubokom magnetskom zasićenju. U [12] položaji rotora pri kojem se tranzistori uklapaju i isklapaju odabrani su tako da

daju optimalnu kombinaciju valovitosti momenta, struje sabirnica te maksimalne izlazne snage, što rezultira većom korisnošću i duljim životnim vijekom baterije električnog automobila. U radovima [8, 64, 90, 122] definiran je faktor uzbude kao odnos srednje vrijednosti fazne struje koja teče od trenutka uklapanja tranzistora do trenutka isklapanja i srednje vrijednosti fazne struje koja teče od trenutka isklapanja tranzistora do trenutka kada fazna struja padne na nulu. U radu [64] predloženo je smanjenje faktora uzbude da bi se smanjila energija magnetiziranja, ali u radu to nije primijenjeno. U [122] razvijen je regulator koji odabire položaje rotora pri kojima se tranzistori uklapaju i isklapaju tako da kombinacija faktora uzbude, efektivne vrijednosti fazne struje, vršne vrijednosti fazne struje i maksimalnog magnetskog toka bude minimalna. U [91] je odabran kompromis između valovitosti momenta i maksimalne korisnosti sustava. U radu [119] srednja struja sabirnica pretvarača održava se mijenjanjem položaja rotora pri kojem se tranzistori uklapaju, a položaj rotora pri kojem se isklapaju tranzistori bira se tako da valovitost struje sabirnice bude minimalna. Pretpostavljeno je da je korisnost maksimalna ako je valovitost minimalna. U radovima [68, 75, 120] je za jednopulsni način rada predloženo da se biraju položaji rotora pri kojem se tranzistori uklapaju i isklapaju kod kojih je efektivna vrijednost faznih struja najmanja. Pretpostavlja se da je korisnost maksimalna ako je efektivna vrijednost faznih struja minimalna jer su gubici u bakru namota proporcionalni kvadratu efektivne vrijednosti fazne struje i gubici u željezu su manji što je magnetski tok manji. U radu [94] su za različite položaje rotora pri kojem se tranzistori uklapaju i isklapaju procijenjeni gubici u namotima i željezu, kao i gubici u pretvaraču. Položaji rotora pri kojem se tranzistori uklapaju i isklapaju koji rezultiraju najmanjim gubicima uspoređeni su s položajima koji daju najmanju efektivnu vrijednost fazne struje. Pokazano je da minimalna efektivna vrijednost fazne struje ne daje maksimalnu korisnost sustava, što je u suprotnosti s radovima [68, 75, 120].

1.3. Znanstveni doprinos doktorske disertacije

U okviru ove doktorske disertacije ostvareni su sljedeći znanstveni doprinosi:

Novi model prekidačkog reluktantnog generatora utemeljen na naponskoj jednadžbi i integralu faznog napona s uključenim međuinduktivitetom susjednih faza prekidačkog reluktantnog generatora, remanentnim magnetskim tokom i nadomjesnim otporom gubitaka u željezu.

Novi algoritam pomaka i promatranja (engl. *perturb and observe*) za kontinuirano traženje optimalnog trenutka uklapanja tranzistora u ovisnosti o položaju rotora s ciljem minimiziranja gubitaka u faznim namotima i željezu. Za minimiziranje spomenutih gubitaka primijenjen je iznos srednje vrijednosti svih faznih struja koji je u dobroj korelaciji sa sumom gubitaka u faznim namotima i željezu te promjena položaja uklapanja tijekom perioda izvođenja algoritma.

1.4. Struktura doktorske disertacije

Doktorska disertacija sastoji se od šest poglavlja i zaključka. U uvodu disertacije naglašena je motivacija koja je potaknula istraživanje, dan je pregled prethodnih istraživanja i istaknut je znanstveni doprinos ovog rada.

U drugom poglavlju opisana je geometrija SRG-a, uključujući najčešće korištene konfiguracije stroja. Također, predstavljen je asimetrični mosni pretvarač koji se koristi za upravljanje SRG-om. Poglavlje završava s opisom teorijske osnove elektromagnetske pretvorbe energije, što je ključna komponenta za razumijevanje procesa pretvaranja mehaničke energije u električnu korištenjem SRG-a.

U trećem poglavlju predstavljen je klasični model SRG-a. Opisano je prikazivanje magnetskih karakteristika kroz drugu parcijalnu sumu Fourierovog reda i način određivanja magnetskih karakteristika istosmjernom metodom, koja je provedena na SRG-u s karakteristikama navedenim u prilogu A. Također, prikazan je postupak izrade klasičnog modela u Matlab/Simulinku. Poglavlje završava s opisom oblikovanja fazne struje SRG-a temeljenog na klasičnom modelu.

U četvrtom poglavlju predstavljen je napredni model SRG-a utemeljen na naponskoj jednadžbi i integralu faznog napona s uključenim međuinduktivitetom susjednih faza SRG-a, remanentnim magnetskim tokom i nadomjesnim otporom gubitaka u željezu. Poglavlje opisuje metode mjerenja potrebnih parametara SRG-a i njihovo integriranje u model. Na kraju poglavlja, opisana je izrada naprednog modela u Matlab/Simulinku.

U petom poglavlju predstavljena je eksperimentalna validacija naprednog modela SRG-a. Napravljen je niz eksperimenata u kojima je laboratorijska maketa dovedena u različite radne točke za više položaja pri kojima se tranzistori uklapaju. U svakom eksperimentu položaj rotora pri kojem se uklapaju tranzistori držan je konstantnim, a položaj rotora pri kojem se isklapaju tranzistori je dobiven kao zbroj položaja pri kojem se tranzistori uklapaju i kuta magnetiziranja. Kut magnetiziranja određen je kao izlaz iz PI regulatora na čijem ulazu je razlika između referentne i stvarne vrijednosti napona između sabirnica asimetričnog mosnog pretvarača. Iz dobivenih podataka napravljena je usporedba faznih struja i ulaznih snaga između podataka dobivenih na laboratorijskoj maketi i podatka dobivenih klasičnim i naprednim modelom.

U šestom poglavlju utvrđeno je da srednja vrijednost svih faznih struja stroja dobro korelira s gubicima u stroju. Predstavljen je algoritam pomaka i promatranja koji određuje položaj rotora pri kojem se uklapaju tranzistori osiguravajući maksimalnu korisnost SRM-a za zadanu radnu točku. Algoritam koristi iznose i promjene srednjih vrijednosti svih faznih struja i promjene položaja rotora pri kojem se tranzistori uklapaju iz prethodne iteracije da bi odredio iznos i smjer u kojem će se navedeni položaj promijeniti u sljedećoj iteraciji. Zaključak disertacije je sadržan u sedmom poglavlju.

2. OPIS RADA PREKIDAČKOG RELUKTANTNOG GENERATORA

2.1. Konfiguracije prekidačkog reluktantnog generatora

Prekidački reluktantni stroj ima istaknute polove na statoru i na rotoru, a identificira se prema njihovom broju. U ovoj disertaciji se koristi SRM čiji su parametri navedeni u prilogu A. Ovaj SRM ima 8 statorskih i 6 rotorskih polova što ga klasificira kao 8/6 SRM.

Prekidački reluktantni stroj može biti projektiran za linearno gibanje [3, 4, 7-10, 79] iako se u pravilu projektira za kružno gibanje. Broj statorskih i rotorskih polova može biti proizvoljan, ali je u pravilu nejednak. Veći broj polova osigurava mirniji rad s manjim propadima momenta, ali s druge strane zahtijeva veći broj poluvodičkih elemenata, što čini sustav s SRG-om kompleksnijim. Kod generatorskog načina rada stator i rotor mogu imati jednak broj polova te se u tom slučaju magnetiziraju svi statorski polovi istovremeno. Ovaj tip SRG-a naziva se jednofazni SRG [1, 123].

Najčešće su korištene trofazne 12/8 [15, 34, 35, 40, 48, 50, 61, 63, 70, 76, 88, 97, 98, 104, 113-116, 120, 121, 124] i 6/4 [14, 43, 47, 53-55, 57, 73, 74, 77, 81, 84, 92, 102, 103, 122, 125-127] konfiguracije prikazane na slici 2.1 te četverofazna 8/6 [2, 11-13, 18, 31-33, 39, 41, 42, 44, 54, 55, 58, 60, 62, 66, 67, 69, 71, 72, 78, 80, 82, 83, 86, 89, 90, 93-96, 99, 100, 105-111, 128-132] konfiguracija prikazana na slici 2.2. 12/8 stroj ima četiri namota po fazi, a 6/4 i 8/6 imaju dva namota po fazi.

Slika 2.1. Trofazni 12/8 i 6/4 prekidački reluktantni strojevi

Slika 2.2. Četverofazni 8/6 prekidački reluktantni stroj

Dva krajnja položaja u kojima se statorski i rotorski pol mogu naći su položaj potpunog preklapanja pp i položaj potpunog nepreklapanja pn kao što je prikazano na slici 2.3 za 8/6 stroj. Položaju pp dodijeljeno je 0°. Kako stroj ima šest rotorskih polova, svaki pol zauzima 60°, pa najveći kut između statorskog i rotorskog pola može biti 30°, što odgovara položaju potpunog nepreklapanja pn.

Slika 2.3. Potpuno poravnat (pp) i potpuno neporavnat položaj (pn) statorskog i rotorskog pola

Kada je jedan rotorski pol, prikazan na slici 2.3, u položaju potpunog nepreklapanja od 30°, susjedni (lijevi) rotorski pol je također u položaju potpunog nepreklapanja, ali u položaju od -30° . Kako je položaju potpunog preklapanja dodijeljeno 0°, područje jedne faze podrazumijeva položaje od $-\theta_{pn} = -30^{\circ}$ do položaja $\theta_{pn} = 30^{\circ}$.

2.2. Asimetrični mosni pretvarač za upravljanje prekidačkim reluktantnim generatorom

Na slici 2.4 prikazan je asimetrični mosni pretvarač za upravljanje četverofaznim SRG-om. On ima zadatak osigurati pojedinim fazama SRG-a energiju za magnetiziranje, a generiranu energiju predati trošilu ili izmjenjivaču. Broj grana mu odgovara broju faza SRG-a. Slika 2.4 prikazuje sustav asimetričnog mosnog pretvarača i četverofaznog 8/6 SRG-a prikazanog na slici 2.2. Svaka grana pretvarača označena s $(F_1 - F_4)$ na slici 2.4 sastoji se od dva tranzistora i dvije diode. Svaka faza stroja spojena je na jednu granu pretvarača. Radi jednostavnijeg prikaza na slici 2.4 prikazan je spoj samo jedne (crvene) faze. Grane pretvarača su međusobno povezane pozitivnom i negativnom sabirnicom između kojih je napon u.

Slika 2.4. Sustav SRG-a s asimetričnim mosnim pretvaračem, kondenzatorom, trošilom i izvorom za početnu uzbudu

U motorskom načinu rada, napon između sabirnica ostvaren je naponskim izvorom. U generatorskom načinu rada, napon između sabirnica generira sam stroj, a održava se kondenzatorom *C* prikazanim na slici 2.4, koji djeluje kao energetski međuspremnik. Kondenzator *C* istovremeno ima ulogu izvora energije potrebne za magnetiziranje faza stroja i ulogu spremnika za pohranu generirane energije. Ova pohranjena energija može se zatim iskoristiti za napajanje trošila R_t [1, 2, 34, 39, 42-44, 53, 63, 64, 66, 67, 71, 81, 84, 86, 90, 102, 103, 108-112, 118, 120, 121, 123, 126-128, 132, 133] ili prenijeti izmjenjivaču [31, 36, 37, 41, 115, 116, 134]. Kada SRG generira više energije nego što trošilo ili izmjenjivač koriste, tada napon na kondenzatoru raste, a kada generira manje, napon na kondenzatoru pada.

Prije nego što se stroj pokrene u generatorskom načinu rada, početnu uzbudu je moguće ostvariti na dva različita načina. Prvi način je iskoristiti remanentni magnetski tok koji ostaje prisutan u željezu stroja nakon prethodnog rada [56, 68, 110], ali ovaj način je nepouzdan pa se obično

energija za početnu uzbudu osigurava iz neovisnog izvora napajanja, naznačenog kao U_{min} na slici 2.4. Dioda D_s prikazana na slici 2.4 služi tome da napon između sabirnica ne padne ispod vrijednosti U_{min} . Ako bi napon između sabirnica u pao ispod U_{min} , dioda D_s osigurava da napon uostane jednak U_{min} .

Slika 2.5 prikazuje jednu granu pretvarača, na koju je spojena jedna faza SRG-a. Tijekom vremena kada su tranzistori uključeni, faza stroja se magnetizira te kroz fazni namot teče struja *i*_f kako je prikazano na slici 2.5. Kao izvor energije potrebne za magnetiziranje pojedine faze stroja služi kondenzator *C*. Za vrijeme magnetiziranja faze stroja, preuzima se energija iz izvora i pohranjuje kao magnetska.

MAGNETIZIRANJE

RAZMAGNETIZIRANJE

Slika 2.5. Magnetiziranje i razmagnetiziranje faze SRG-a asimetričnim mosnim pretvaračem

Kada se tranzistori isklope, vode diode za vrijeme razmagnetiziranja faze. Tada struja kroz fazni namot i dalje teče u istom smjeru kao pri magnetiziranju, a struja koja prolazi kroz sabirnice mijenja smjer. Tijekom razmagnetiziranja, koje se odvija preko dioda i sabirnica pretvarača, kondenzator C i trošilo R_t preuzimaju generiranu energiju, kao i energiju koja je prethodno preuzeta iz izvora i pohranjena kao magnetska. Kada niti jedna faza trenutno ne generira energiju, trošilo R_t se napaja isključivo iz kondenzatora. To se može dogoditi kod nižih opterećenja ili ako jedna faza stroja prestane generirati zbog kvara.

Za tranzistore u mosnom pretvaraču najčešće se koriste MOSFET (od engl. *metal oxide semiconductor field effect transistor*) i IGBT (od engl. *insulated gate bipolar transistor*) tranzistori koji su pogodni su jer imaju mogućnost prisilne komutacije. Tranzistori moraju moći podnijeti zahtijevano naponsko i strujno opterećenje, a isto vrijedi i za diode.
Ako se faza magnetizira kada se rotorski pol nalazi u neporavnatom položaju u odnosu na statorski pol te faze, tada postoji elektromagnetski moment koji želi privući rotorski pol statorskom, odnosno dolazi do pretvorbe električne energije u mehaničku, što definira motorski način rada. U slučaju da na rotor uz elektromagnetski moment djeluje i mehanički moment koji je suprotan i veći od elektromagnetskog, dolazi do pretvorbe mehaničke energije u električnu, što definira generatorski način rada [75, 124].

Slika 2.6 prikazuje elektromagnetski moment M i smjer vrtnje rotora u generatorskom načinu rada. Kutna brzina vrtnje označena je s ω , a smjer vrtnje je označen strelicom.

Slika 2.6. Elektromagnetski moment u generatorskom načinu rada

Na slici 2.6 se vidi da je faza F_1 magnetizirana i da se rotor kreće u smjeru kazaljke na satu, što je suprotno smjeru elektromagnetskog momenta koji ta faza stvara. Slika 2.7 prikazuje redoslijed magnetiziranja faza SRG-a. Nakon faze F_1 , magnetizira se faza F_4 jer je slijed magnetiziranja faza stroja suprotan smjeru vrtnje rotora [60].

Slika 2.7. Redoslijed magnetiziranja faza za generatorski način rada četverofaznog 8/6 SRM-a

Nakon faze F_4 , slijedi magnetiziranje faze F_3 , zatim faze F_2 , nakon čega se ovaj ciklus iznova ponavlja. Iz ovog primjera jasno je da je proces magnetiziranja faza stroja nužno precizno sinkronizirati s položajem rotora, što se postiže korištenjem inkrementalnog enkodera.

2.3. Elektromagnetska pretvorba energije prekidačkog reluktantnog generatora

Kao što je prikazano na slici 2.3 u poglavlju 2.1., statorski i rotorski pol mogu zauzeti različite položaje unutar raspona između potpunog preklapanja θ_{pp} i potpunog nepreklapanja θ_{pn} . U položaju θ_{pp} induktivitet je maksimalan, a u položaju θ_{pn} je minimalan. Ovisnost induktiviteta faznog namota o položaju rotora, za linearni magnetski krug, prikazana je na slici 2.8 [30, 37, 38, 46, 47, 69, 122, 128].

Slika 2.8. Ovisnost induktiviteta faznog namota o položaju statorskog i rotorskog pola za linearni magnetski krug

Slika 2.9 prikazuje pravce magnetiziranja za položaje θ_{pp} i θ_{pn} pod pretpostavkom da nema značajnog utjecaja zasićenja željeza. Osim toga, prikazan je pravac magnetiziranja za proizvoljni položaj θ_T . Pretpostavlja se da je rotor zakočen u položaju θ_T te da je SRG priključen na asimetrični mosni pretvarač prikazan na slici 2.4. Kada se tranzistori uklope, kroz fazni namot poteći će struja i_f koja će rasti od vrijednosti 0 A do $i_{f,T}$ kako je prikazano na slici 2.5. Za to vrijeme ulančeni magnetski tok ψ (u nastavku: magnetski tok) raste po crvenoj liniji prikazanoj na slici 2.9.

Slika 2.9. Magnetiziranje faze stroja uz zakočen rotor u položaju θ_T

U točki *T* prikazanoj na slici 2.9 energija preuzeta iz izvora za vrijeme magnetiziranja uz zakočen rotor pohranjena je u magnetskom polju kao energija W_1 , što je prikazano na slici 2.9 plavom šrafiranom površinom. Ova energija je opisana sljedećom jednadžbom:

$$W_1 = \int_0^{\Psi_T} i_f \cdot d\Psi = \frac{1}{2} \cdot \Psi_T \cdot i_{f,T}$$
(2.1)

gdje je:

 ψ_T magnetski tok u točki T,

*i*_{f,T} fazna struja u točki T.

Na slici 2.10 prikazano je magnetiziranje faze stroja uz pomicanje rotora od položaja θ_{pp} do položaja θ_T .

Slika 2.10. Magnetiziranje faze stroja uz pomicanje rotora od položaja θ_{pp} do θ_T

U slučaju prikazanom na slici 2.10 također je postignuta točka *T*, ali pod drugim uvjetima. Pretpostavlja se da je rotorski pol u trenutku uklapanja tranzistora u položaju potpunog preklapanja. Na rotor djeluje moment koji nastoji rotorski pol dovesti u položaj θ_T . Istovremeno se rotorski pol pomiče od položaja θ_{pp} do položaja θ_T i fazna struja raste od vrijednosti 0 A do $i_{f,T}$. Da bi se dobila krivulja ovisnosti magnetskog toka o struji, može se smatrati da se položaj rotora θ mijenja u diskretnim koracima od θ_{pp} preko θ_{T1} , θ_{T2} , θ_{T3} , θ_{T4} do konačno θ_T . Za svaki od spomenutih položaja, na slici 2.10 su prikazani pravci ovisnosti magnetskog toka o faznoj struji. Pri poznatom položaju rotora i poznatoj faznoj struji moguće je definirati radnu točku na slici 2.10. Tako, npr. točka T_1 definira magnetski tok faze ψ_{T1} kada je rotor u položaju θ_{T1} i kada kroz fazni namot teče struja $i_{f,T1}$. Slično vrijedi i za točke T_2 - T_4 pa konačno i za krajnju točku T. Dakle, kada bi se rotor stroja pomicao u diskretnim koracima tada bi se i magnetski tok faze mijenjao u diskretnim koracima definiranim radnim točkama O, T_1 - T_4 i T. Rotor stroja se ipak pomiče kontinuirano, što se može bolje aproksimirati povećanjem broja diskretnih točaka. U tom slučaju se može reći da se faza stroja magnetizira po crvenoj liniji prikazanoj na slici 2.10. Energija koja je preuzeta iz izvora i pohranjena u magnetskom polju kada se rotor pomiče od položaja θ_{pp} do položaja θ_T opisana je sljedećom jednadžbom:

$$W_{2} = \int_{0}^{\Psi_{T}} i_{f} \cdot d\Psi$$

$$= i_{f,T} \cdot \Psi_{T} - \int_{0}^{i_{f,T}} \Psi \cdot di_{f}$$

$$= i_{f,T} \cdot \Psi_{T} - \left(W_{g,m} + \frac{1}{2} \cdot \Psi_{T} \cdot i_{f,T} \right)$$

$$= \frac{1}{2} \cdot \Psi_{T} \cdot i_{f,T} - W_{g,m}$$

$$= W_{1} - W_{g,m}$$
(2.2)

Energija W_2 prikazana je na slici 2.10 plavom šrafiranom površinom. Kako je za postizanje istih uvjeta u oba slučaja potrebna jednaka energija, a vrijedi da je $W_1 > W_2$, energija označena sa $W_{g,m}$ na slici 2.10 mora biti energija pretvorena iz mehaničke i pohranjena u magnetskom polju za vrijeme magnetiziranja faze stroja kada se rotor pomiče od položaja θ_{pp} do položaja θ_T te vrijedi $W_{g,m} = W_1 - W_2$.

Kada se tranzistori isklope u točki T, počinje razmagnetiziranje faze stroja. Kroz fazni namot nastavit će teći struja i_f u istom smjeru kao i kod magnetiziranja kada su tranzistori uklopljeni, ali u ovom slučaju će padati od vrijednosti $i_{f,T}$ do 0 A kao što je prikazano na slici 2.5. Kako tranzistori više ne vode, fazna struja će se preko dioda usmjeriti prema sabirnicama pretvarača. Za vrijeme razmagnetiziranja faze stroja, struja u sabirnicama pretvarača teče od namota prema kondenzatoru. Ta struja teče u suprotnom smjeru nego što je tekla kada se faza magnetizira. Dakle, tok energije više nije od izvora prema fazi stroja, nego u suprotnom smjeru.

Slično kao što se odvija proces magnetiziranja, proces razmagnetiziranja se može analizirati na isti način. Slično kao i kod procesa magnetiziranja faze, krivulja ovisnosti magnetskog toka o struji bit će različita kada je rotor zakočen i kada se vrti. Ako je rotor zakočen razmagnetiziranje će se događati na isti način kao što je opisano magnetiziranje na slici 2.9 samo će biti u suprotnom smjeru, od magnetskog toka ψ_T do točke *O*. Uz zanemarene gubitke u namotu i željezu, energija W_1 opisana slikom 2.9 vratit će se izvoru. Slika 2.11 prikazuje razmagnetiziranje faze stroja kada se tranzistori isklope u točki *T*, a rotor se nastavi kretati prema položaju potpunog nepreklapanja θ_{pn} . Rotor se i dalje pomiče pod utjecajem momenta kao i kod magnetiziranja opisanog na slici 2.10. Kao i u prethodnom primjeru, da bi se dobila krivulja ovisnosti magnetskog toka o struji, može se smatrati da se položaj rotora θ mijenja u diskretnim koracima, ali ovaj put od θ_T preko θ_{T5} , θ_{T6} , θ_{T7} , θ_{T8} do konačno θ_{pn} . Kada bi se rotor stroja pomicao u diskretnim koracima, tada bi se i magnetski tok faze mijenjao u diskretnim koracima točkama *T*, T_5 - T_8 i *O*. Rotor stroja se ipak pomiče kontinuirano pa se može reći da se faza stroja razmagnetizira po crvenoj liniji prikazanoj na slici 2.11. Uz zanemarene gubitke u namotu i željezu, izvoru je predana energija označena na slici 2.11 kao ukupna energija W_u .

Slika 2.11. Razmagnetiziranje faze stroja uz pomicanje rotora od položaja θ_T do θ_{pn}

Dio energije W_u koji se nalazi iznad pravca magnetiziranja kroz točku T je energija pohranjena u magnetskom polju za vrijeme magnetiziranja, odnosno jednaka je zbroju energija W_2 i $W_{g,m}$ koje su odgovarajućim površinama prikazane na slici 2.10. Za vrijeme razmagnetiziranja, tok energije je od faze stroja prema izvoru tako da energija ispod pravca magnetiziranja kroz točku T na slici 2.11 mora biti energija pretvorena iz mehaničke i pohranjena u magnetskom polju.

Na slici 2.12. prikazan je cjeloviti ciklus magnetiziranja i razmagnetiziranja. Na njoj su prikazane energija preuzeta iz izvora i pohranjena u magnetskom polju označena kao W_2 i energija pretvorena iz mehaničke i pohranjena u magnetskom polju označena kao $W_{g,m}$. Ta pretvorba energije odvija se za vrijeme magnetiziranja. Energija pretvorena iz mehaničke i pohranjena u magnetskom polju za vrijeme razmagnetiziranja označena je kao $W_{g,r}$ na slici 2.12 narančastom šrafiranom površinom.

Slika 2.12. Cjeloviti ciklus magnetiziranja i razmagnetiziranja

U nastavku će se opisati cjeloviti ciklus promjene magnetskog toka jedna faze kada je rotor otkočen. Prije nego se tranzistori jedne grane pretvarača uklope, fazna struja i_f i magnetski tok ψ su nula što je definirano točkom magnetiziranja *O* na slici 2.12. Kada se tranzistori uklope, faza se počinje postupno magnetizirati, a krivulja magnetiziranja stroja prati ljubičastu liniju od točke *O* do točke *T*. Tijekom ovog vremena, fazna struja raste na vrijednost $i_{f,T}$, a magnetski tok dostiže vrijednost ψ_T . U magnetskom polju pohranjuje se energija preuzeta iz izvora preko sabirnica pretvarača kao energija W_2 i energija pretvorena iz mehaničke kao $W_{g,m}$.

Ako se tranzistori isklope u točki *T* započinje period razmagnetiziranja. Fazna struja i magnetski tok postupno padaju na nulu. Krivulja razmagnetiziranja prati narančastu liniju prikazanu na slici 2.12 od točke *T* do točke *O*. Za to vrijeme izvoru se predaju energije W_2 i $W_{g,m}$, koje su prethodno pohranjene u magnetskom polju za vrijeme magnetiziranja. Za vrijeme razmagnetiziranja mehanička energija se i dalje nastavlja pretvarati u magnetsku kao energija $W_{g,r}$. Kao i energije W_2 i $W_{g,m}$, energija $W_{g,r}$ se predaje izvoru. Tu je potrebno napomenuti da zbroj energija W_2 , $W_{g,m}$ i $W_{g,r}$ prikazanih na slici 2.12 daju energiju W_u prikazanu na slici 2.11.

Dakle, u jednom ciklusu, uz zanemarene gubitke u željezu i namotu stroja, iz izvora je preuzeta energija W_2 , a izvoru su predane energije W_2 , $W_{g,m}$ i $W_{g,r}$. Kada se energije $W_{g,m}$ i $W_{g,r}$ pohranjene u magnetskom polju predaju izvoru kao električna energija, njihov zbroj daje generiranu energiju $W_g = W_{g,m} + W_{g,r}$.

U generatorskom načinu rada, proces magnetiziranja faze stroja obično počinje prije nego što rotorski pol dosegne položaj potpunog preklapanja da bi se osiguralo da magnetski tok bude dovoljno velik. Kao rezultat toga, dio energije koji se preuzima iz izvora i pohranjuje u magnetskom polju, pretvara se u mehaničku energiju [135]. Na slici 2.13, ova energija je označena kao W_{meh} .

Slika 2.13. Pretvorba magnetske energije u mehaničku

Energija W_{meh} stvara moment u smjeru vrtnje rotora. U pravilu, kada se jedna faza magnetizira, susjedna faza je u području generiranja tako da energija W_{meh} nije izgubljena jer se energija preko vratila stroja prenosi na fazu koja trenutno generira [135].

Slika 2.14 prikazuje cjeloviti ciklus magnetiziranja i razmagnetiziranja. Tu se pretpostavlja da je faza stroja magnetizirana prije nego što je rotorski pol stigao u položaj potpunog preklapanja. Na slici 2.14 u obzir je uzeto magnetsko zasićenje. Pri položaju θ_{pp} zračna udaljenost između statorskog i rotorskog pola je najmanja pa je magnetsko zasićenje izraženo u krivulji magnetiziranja za taj položaj kao što je prikazano na slici 2.14. Budući da se rotorski pol odmiče od statorskog prema položaju θ_{pn} magnetsko zasićenje je sve manje izraženo. U položaju θ_{pn} krivulja magnetiziranja postaje pravac, tj. magnetsko zasićenje je praktički zanemarivo.

Slika 2.14. Cjeloviti ciklus magnetiziranja i razmagnetiziranja uz magnetsko zasićenje i pretvorbu magnetske energije u mehaničku

Na temelju provedene analize se može zaključiti da kada se rotor kreće od položaja potpunog preklapanja do položaja potpunog nepreklapanja moguća je pretvorba mehaničke energije u magnetsku. Magnetiziranjem faze stroja prije nego što rotor postigne položaj potpunog preklapanja moguće je postići veći magnetski tok nego ako se faza stroja počne magnetizirati pri položaju potpunog preklapanja. Veći magnetski tok osigurava veću pohranu mehaničke energije u magnetsku, tj. veće površine označene na slici 2.14 kao $W_{g,m}$ i $W_{g,r}$. Konačno, moguće je ostvariti veću generiranu energiju.

2.4. Regulacija napona asimetričnog mosnog pretvarača upravljanjem prekidačkim reluktantnim generatorom u jednopulsnom načinu rada

U poglavlju 2.2. na slici 2.4 prikazan je asimetrični mosni pretvarač koji se sastoji od četiri grane, svaka s dva tranzistora i dvije diode. Između pozitivne i negativne sabirnice pretvarača također su spojeni kondenzator i trošilo. Kada struja teče od kondenzatora prema trošilu, napon na kondenzatoru pada, što uzrokuje i pad napona između sabirnica pretvarača. Da bi se taj napon vratio na željenu razinu, potrebno je nadoknaditi energiju koju je kondenzator predao trošilu. To se postiže pretvorbom mehaničke energije u električnu, kako je opisano u poglavlju 2.3. Preciznim odabirom položaja rotora kod kojeg se tranzistori uklapaju θ_u (u nastavku: položaj uklapanja) i položaja rotora kod kojeg se isklapaju θ_i (u nastavku: položaj isklapanja) regulira se napon između

sabirnica pretvarača asimetričnog mosnog pretvarača te količina energije koju SRG generira. Na slici 2.15 prikazana je pojednostavljena blokovska shema regulacijskog sustava s SRG-om.

Slika 2.15. Pojednostavljena blokovska shema regulacijskog sustava s prekidačkim reluktantnim generatorom

Regulacija napona između sabirnica asimetričnog mosnog pretvarača prikazana na slici 2.15 zahtijeva poznavanje trenutnog iznosa napona u i položaja rotora θ . Oni se u pravilu mjere naponskim senzorom i enkoderom. Izmjereni podaci se zatim dostavljaju u računalo. PI regulator na temelju razlike između napona u i referentnog napona između sabirnica U_{ref} određuje iznos kuta magnetiziranja θ_{mag} koji označava kut koji rotor prijeđe za vrijeme magnetiziranja faze. Položaj uklapanja θ_u može biti zadan kao konstantan ili se može mijenjati. Položaj isklapanja θ_i određen je kao zbroj položaja uklapanja θ_u i kuta magnetiziranja θ_{mag} te vrijedi $\theta_{mag} = \theta_i - \theta_u$.

Kada su poznati položaji uklapanja θ_u i isklapanja θ_i te trenutni položaj rotora θ , određuje se sklopno stanje tranzistora *d* za svaku granu asimetričnog mosnog pretvarača pojedinačno. Ako je položaj rotora između položaja uklapanja i isklapanja, tranzistori su uklopljeni, a inače su isklopljeni. Dok su tranzistori uklopljeni, faza stroja se magnetizira, a dok su isklopljeni razmagnetizira kao što je prikazano slikom 2.14 u prethodnom poglavlju.

3. KLASIČNI MATEMATIČKI MODEL PREKIDAČKOG RELUKTANTNOG GENERATORA S ASIMETRIČNIM MOSNIM PRETVARAČEM

U ovom poglavlju opisan je postupak izrade klasičnog modela 8/6 SRG-a koji je opterećen radnim trošilom R_t pri čemu je SRG napajan asimetričnim mosnim pretvaračem. Ovaj model ne uključuje međuinduktivitet, gubitke u željezu ni remanentni magnetski tok. Polazi se od poznate nadomjesne sheme jedne faze i pripadajuće matematičke jednadžbe. Nakon toga se postavlja sustav međusobno nezavisnih jednadžbi čiji je broj jednak broju faza SRG-a te jednadžbi koje povezuju struju trošila, struju kondenzatora i struju sabirnica asimetričnog mosnog pretvarača.

Nadomjesna shema jedne grane asimetričnog mosnog pretvarača i jedne faze klasičnog modela stroja prikazana je na slici 3.1. Jedna faza 8/6 SRG-a sastoji se od dva namota spojena u seriju, smještena na suprotnim istaknutim polovima statora. Dva namota jedne faze stroja nadomještaju se induktivitetom L spojenim u seriju s otporom namota R. Svaka faza stroja spojena je na jednu granu asimetričnog mosnog pretvarača koja se sastoji od dvije diode i dva tranzistora. Svaki par dioda-tranzistor modeliran je kao idealna strujno dvosmjerna i naponski unipolarna komponenta, što je opravdano jer je pad napona na tranzistorima i diodama zanemariv u usporedbi s padom napona na omskom otporu namota i naponom između sabirnica.

Slika 3.1. Nadomjesna shema jedne faze SRG-a spojene na jednu granu asimetričnog mosnog pretvarača

Kroz namot teče struja i_f , a napon između sabirnica asimetričnog mosnog pretvarača je u. Prema slici 3.1 vrijedi naponska jednadžba:

$$k \cdot u = R \cdot i_f + \frac{d\psi(i_f, \theta)}{dt}$$
(3.1)

gdje je:

k sklopno stanje tranzistora,

u napon između sabirnica asimetričnog mosnog pretvarača,

i_f fazna struja,

ψ ulančeni magnetski tok faze stroja,

 θ položaj rotora.

Kada su tranzistori grane pretvarača uklopljeni, k = 1, a za vrijeme kada vode diode, k = -1. Magnetski tok ψ ovisi o faznoj struji i položaju statorskog i rotorskog pola.

Postoje radovi [1-3, 9, 11, 12, 18, 30, 31, 36, 39-41, 55, 57, 63, 64, 66, 67, 71, 81, 84, 86, 90, 91, 93, 97-101, 103, 108-111, 128] u kojima je model temeljen na naponskoj jednadžbi u kojoj je magnetski tok zapisan kao umnožak induktiviteta L i fazne struje i_f prikazane na slici 3.1. Takav model je kompleksniji te zahtijeva definiranje dinamičkog induktiviteta koji nastaje zbog magnetskog zasićenja željeza.

Kako je već navedeno, magnetski tok ψ mijenja se zbog promjene fazne struje i_f i zbog promjene položaja rotora te iz jednadžbe (3.1) slijedi:

$$k \cdot u = R \cdot i_f + \frac{\partial \psi}{\partial i_f} \cdot \frac{di_f}{dt} + \frac{\partial \psi}{\partial \theta} \cdot \frac{d\theta}{dt}$$
(3.2)

Kako je $\frac{d\theta}{dt}$ kutna brzina vrtnje stroja ω , iz jednadžbe (3.2) dobiva se:

$$k \cdot u = R \cdot i_f + \frac{\partial \Psi}{\partial i_f} \cdot \frac{di_f}{dt} + \frac{\partial \Psi}{\partial \theta} \cdot \omega$$
(3.3)

Umnožak kutne brzine vrtnje i parcijalne derivacije magnetskog toka po položaju rotora je inducirana elektromotorna sila *e*, tako da se jednadžba (3.3) može zapisati kao:

$$k \cdot u = R \cdot i_f + \frac{\partial \psi}{\partial i_f} \cdot \frac{di_f}{dt} + e$$
(3.4)

Množenjem jednadžbe (3.3) s faznom strujom i_f te integriranjem cijele jednadžbe po vremenskom intervalu protjecanja struje prilikom prolaska rotorskog pola, dobiva se sljedeća jednadžba koja opisuje energetsku bilancu sustava SRG-a:

$$\int_{0}^{T} k \cdot u \cdot i_{f} \cdot dt = \int_{0}^{T} R \cdot i_{f}^{2} \cdot dt + \int_{0}^{T} i_{f} \cdot \frac{\partial \Psi}{\partial i_{f}} \cdot \frac{di_{f}}{dt} \cdot dt + \int_{0}^{T} i_{f} \cdot \frac{\partial \Psi}{\partial \theta} \cdot \omega \cdot dt$$
(3.5)

gdje je T vremenski interval protjecanja struje prilikom prolaska rotorskog pola.

Fazna struja i_f i napon između sabirnica u su uvijek pozitivni. Sklopno stanje tranzistora k omogućava upravljanje tokom energije. Kada su tranzistori uklopljeni, k = 1 pa je tok energije pozitivan. Tada struja teče od izvora prema fazi stroja preko sabirnica asimetričnog mosnog pretvarača. Kada se tranzistori isklope, k = -1 i vode diode pa je tok energije negativan. Tada struja teče od faze stroja prema izvoru preko sabirnica. Kada fazna struja padne na nulu, prestaje razmjena energije između namota i izvora. Dakle, jednadžba (3.5) u konačnici treba imati negativnu vrijednost da bi se ostvarila generirana energija. Prvi član s desne strane su Jouleovi gubici, koji uvijek imaju pozitivnu vrijednost. Drugi član je energija magnetiziranja, koja je preuzeta i zatim vraćena izvoru te on iznosi nula. Za generiranu energiju mora biti zadužen treći član s desne strane jednadžbe (3.5), koji mora u konačnici biti negativan. Kako su fazna struja i kutna brzina vrtnje uvijek pozitivni, on jedino može biti negativan ako je promjena magnetskog toka po položaju negativna. Dakle, magnetski tok se treba smanjivati kako se rotor pomiče, što odgovara pomicanju rotora od položaja potpunog preklapanja do položaja potpunog nepreklapanja. Energija opisana trećim članom s desne strane jednadžbe (3.5) je suma energija $W_{g,m}$ i $W_{g,r}$ prikazanih na slici 2.12 u poglavlju 2.3. Bitno je naglasiti, ako je rotor stroja zakočen, tada je treći član jednadžbe (3.5) jednak nuli. Drugi član te jednadžbe bi opisivao energiju magnetiziranja i razmagnetiziranja, koja je prikazana na slici 2.9 kao W_1 .

Pretvorba energije opisana u poglavlju 2.3. postiže se preciznim oblikovanjem fazne struje uklapanjem i isklapanjem tranzistora u odgovarajućim trenucima. Tri su moguća načina oblikovanja fazne struje [35, 91, 109, 115, 127, 132]: histerezno (engl. *Current Chopping Control* – CCC), pulsno-širinsko (engl. *Pulse Width Modulation* – PWM) i jednopulsno (engl. *Angle Position Control* – APC). Kod histereznog upravljanja, nakon što se tranzistori uklope i fazna struja dostigne referentnu vrijednost, višestrukim uklapanjem i isklapanjem tranzistora, fazna struja se drži između dvije vrijednosti oko referentne [12, 31-33, 35-37, 40, 41, 43, 44, 67, 84, 86, 91, 100, 103, 108-111, 114-116, 122, 126, 127, 132]. Ako se primjeni pulsno-širinsko oblikovanje [30, 35, 39, 49, 85, 91, 100, 109, 113, 115, 127, 132], upravlja se širinom impulsa pozitivnog ili negativnog napona između sabirnica koji djeluje na fazni namot.

U ovoj je disertaciji korišteno jednopulsno oblikovanje fazne struje. Ono podrazumijeva da se tranzistori pripadajuće grane pretvarača jednom uklope i jednom isklope u vremenskom intervalu tijekom kojeg teče fazna struja kod svakog prolaska rotorskog pola pored magnetiziranog statorskog pola. Položaj uklapanja može biti konstantan, a položaj isklapanja se može mijenjati [84, 102, 103], zatim položaj isklapanja može biti konstantan, a položaj uklapanja se može mijenjati [34, 48, 64] ili se oba položaja mogu mijenjati [12, 71, 75, 86, 91, 115, 117, 118] da bi se realizirao funkcionalan rad sustava s SRG-om.

Ako se tranzistori jedne faze stroja isklope istovremeno, postiže se jednostupanjsko magnetiziranje faze stroja, a ako se isklope u različito vrijeme, postiže se dvostupanjsko magnetiziranje. Kod dvostupanjskog magnetiziranja, kada vodi jedan tranzistor, fazna struja se zatvara preko tranzistora koji vodi i jedne diode. Ova metoda se može koristiti u sva tri navedena načina oblikovanja fazne struje. Kod dvostupanjskog magnetiziranja manji je propad napona između sabirnica u odnosu na jednostupanjsko, što znači da se može koristiti manji kondenzator [18, 111, 128]. U radu [71] pokazano je da jednostupanjsko magnetiziranje daje oko 10 % veću generiranu energiju od dvostupanjskog za istu vršnu vrijednost fazne struje. U radu [41] je navedeno da dvostupanjsko magnetiziranje ima veće gubitke od jednostupanjskog. Kako je cilj ove disertacije postizanje što veće korisnosti, korišteno je jednostupanjsko magnetiziranje.

U nastavku je opisano oblikovanje fazne struje u jednopulsnom načinu rada SRG-a. Uz zanemarenje otpora namota, za potrebe objašnjenja oblikovanja fazne struje, iz jednadžbe (3.4) dobiva se sljedeća jednadžba koja opisuje promjenu fazne struje po vremenu:

$$\frac{di_f}{dt} = \frac{1}{\frac{\partial \Psi}{\partial i_f}} \cdot (k \cdot u - e)$$
(3.6)

Iznos desne strane jednadžbe (3.6) određuje hoće li fazna struja rasti, padati ili biti konstantna. Promjena magnetskog toka po faznoj struji $\frac{\partial \Psi}{\partial i_f}$ uvijek je pozitivna. Napon između sabirnica *u* i kutna brzina vrtnje ω se ne mijenjaju značajno za vrijeme jednog prolaska rotorskog pola kraj statorskog. Kutna brzina vrtnje ω je uvijek pozitivna, tako da predznak inducirane elektromotorne sile ovisi o promjeni magnetskog toka po položaju. Ta promjena ovisi o tome nalazi li se rotorski pol na negativnom ili pozitivnom položaju. Ako se rotor kreće od položaja $\theta = -30^{\circ}$ do položaja $\theta = 0^{\circ}$, magnetski tok raste pa elektromotorna sila *e* ima pozitivan iznos. S druge strane, ako se kreće od $\theta = 0^{\circ}$ do $\theta = 30^{\circ}$, magnetski tok pada pa elektromotorna sila *e* ima negativan iznos. Ako su tranzistori uklopljeni, u jednadžbi (3.6), k = 1 pa napon *u* na namot djeluje kao pozitivan. Ako su tranzistori isklopljeni i vode diode, k = -1 pa napon *u* na namot djeluje kao negativan. Dakle, prema jednadžbi (3.6), hoće li fazna struja rasti, padati ili biti konstantna ovisi o sklopnom stanju tranzistora *k* te o odnosu napona *u* i inducirane elektromotorne sile *e*. Na slici 3.2 prikazano je oblikovanje fazne struje kod jednopulsnog načina rada SRG-a.

Slika 3.2. Oblikovanje fazne struje kod jednopulsnog načina rada SRG-a

Na slici 3.2 oblikovanje fazne struje podijeljeno je u četiri područja. U prvom području (I), vode tranzistori i rotorski pol se nalazi u negativnom području. U drugom području (II) vode tranzistori i rotorski pol se nalazi u pozitivnom području. U trećem su području (III) tranzistori isklopljeni, vode diode i rotorski pol se nalazi u pozitivnom području. U četvrtom području (IV) vode diode i rotorski pol se nalazi blizu položaja θ_{pn} , gdje je magnetski tok minimalan.

Faza stroja se u pravilu počinje magnetizirati prije nego rotorski pol dođe u položaj potpunog preklapanja, što je prikazano na slici 3.2 (područje (I)). Tu vode tranzistori pa je k = 1 u jednadžbi (3.6). Kako fazna struja *i*_f tu tek počinje rasti, tako je i magnetski tok ψ mali pa je i inducirana elektromotorna sila *e* mala u odnosu na napon između sabirnica *u*. Zato se može smatrati da fazna struja u području (I) raste pod utjecajem pozitivnog napona između sabirnica.

U području (II) napon na namotu je i dalje pozitivan jer vode tranzistori pa je k = 1. Tu magnetski tok ima značajnu vrijednost pa je i inducirana elektromagnetska sila značajna. Budući da se područje (II) nalazi u pozitivnom položaju, promjena magnetskog toka po položaju je negativna pa je i inducirana elektromotorna sila *e* negativna. Prema jednadžbi (3.6) fazna struja nastavlja rasti pod utjecajem napona između sabirnica *u* i inducirane elektromotorne sile *e*.

Pri položaju θ_i tranzistori se isklapaju te započinje područje (III) prikazano na slici 3.2. U tom području je k = -1 tako da napon između sabirnica djeluje kao negativan na namot stroja. Inducirana elektromotorna sila *e* je i dalje negativna, kao i u području (II). Odnos inducirane elektromotorne sile i napona na faznom namotu određuje kakav oblik će fazna struja imati [1, 108, 115, 121, 122]. Tu se može dogoditi jedna od tri situacije koji su prikazane na slici 3.2. Ako je |e| < |u|, izraz na desnoj strani jednadžbe (3.6) je negativan, odnosno fazna struja, nakon što se isklope tranzistori, počinje padati. U ovom slučaju, sklopnim stanjem tranzistora moguće je izabrati hoće li fazna struja rasti ili padati pa je moguće CCC i PWM oblikovanje fazne struje. Pri nižim brzinama vrtnje, u pravilu je |e| < |u| jer je inducirana elektromotorna sila *e* proporcionalna brzini vrtnje. Ako je $|e| \approx |u|$, izraz na desnoj strani jednadžbe (3.6) je približno nula, odnosno gotovo nema promjene fazne struje. Tada je fazna struja konstantna, kao što je prikazano na slici 3.2. U trećem slučaju tranzistora dolazi do porasta fazne struje. Tada CCC i PWM oblikovanje fazne struje cak i nakon isklapanja tranzistora dolazi do porasta fazne struje. Tada CCC i PWM oblikovanje fazne struje nisu mogući nego samo jednopulsno.

U četvrtom području (IV) prikazanom na slici 3.2, rotorski pol se nalazi blizu položaja potpunog nepreklapanja pri kojem je induktivitet minimalan. Iako fazna struja ima značajnu vrijednost, magnetski tok je mali pa je i inducirana elektromotorna sila mala u odnosu na napon između sabirnica. Zato se može smatrati da fazna struja u području (IV) pada pod utjecajem negativnog napona između sabirnica.

Ako se faza stroja magnetizira više od pola područja jedne faze, fazna struja ne može pasti na nulu prije početka sljedećeg perioda vođenja. Područje jedne faze podrazumijeva položaje od $\theta_{pn} = -30^{\circ}$ do položaja $\theta_{pn} = 30^{\circ}$ za SRG iz priloga A, odnosno 60°. Ako se zadrži takav način magnetiziranja, fazna struja ulazi u stanje kontinuiranog vođenja gdje može početi nekontrolirano rasti i tako oštetiti stroj i opremu [36, 50, 71]. U radovima [131, 136] napravljena je simulacija te je u radu [137] postignut eksperimentalni motorski pogon SRM-a za jednopulsni kontinuirani način rada. Faza stroja se magnetizira nešto više od pola područja jedne faze čime je pokrivena energija potrebna za pogon stroja i gubici. Pokazano je da kod primjene kontinuiranog vođenja ne postoji teorijsko ograničenje brzine vrtnje SRM-a ako je snaga na vratilu, kojom je stroj opterećen, manja od nazivne vrijednosti.

Kod motorskog načina rada inducirana elektromotorna sila uzrokuje smanjenje fazne struje pa ne može doći do nekontroliranog rasta, dok u generatorskom načinu rada inducirana elektromotorna sila uzrokuje porast fazne struje kao što je prikazano u području (III) na slici 3.2. U radu [50] napravljena je simulacija rada za generatorski jednopulsni kontinuirani način rada. Primjenom kontinuiranog vođenja moguće je ostvariti generiranje pri brzinama višestruko većim od nazivne brzine vrtnje. U navedenom radu je predloženo upravljanje vršnom faznom strujom da bi se izbjegao nekontrolirani rast i iskoristilo prednost kontinuiranog vođenja. U ovoj disertaciji kut magnetiziranja ograničen je na 30°, odnosno pola područja jedne faze da bi se osiguralo da sustav ne uđe u stanje kontinuiranog vođenja.

Nadomjesna shema jedne faze SRG-a spojenog na jednu granu asimetričnog mosnog pretvarača temelj je nadomjesne sheme klasičnog modela SRG-a, koji je opterećen radnim trošilom R_t , pri čemu je SRG napajan asimetričnim mosnim pretvaračem. Ta shema prikazana je na slici 3.3.

Slika 3.3. Nadomjesna shema klasičnog modela SRG-a, koji je opterećen radnim trošilom R_t pri čemu je SRG napajan asimetričnim mosnim pretvaračem

Na slici 3.3, *C* je kondenzator koji služi kao izvor i kao međuspremnik energije. Otpor trošila označen je kao R_t . S i_{f1} - i_{f4} označene su fazne struje sa svaku fazu SRG-a, i_0 je struja koja teče kroz sabirnice, i_C je struja kondenzatora *C*, a i_t je struja kroz otpor trošila R_t . Iz jednadžbe (3.3) dobiva se:

$$i_{f} = \frac{1}{\frac{\partial \Psi}{\partial i_{f}}} \cdot \int_{0}^{T} \left(k \cdot u - R \cdot i_{f} - \frac{\partial \Psi}{\partial \theta} \cdot \omega \right) dt + i_{f} (0)$$
(3.7)

U trenutku uklapanja tranzistora $i_f(0) = 0$ A. Na temelju jednadžbe (3.7) i nadomjesne sheme asimetričnog mosnog pretvarača prikazane na slici 3.3 postavlja se sustav jednadžbi koji opisuje fazne struje u sve četiri faze stroja:

$$i_{fj} = \frac{1}{\frac{\partial \Psi}{\partial i_{fj}}} \int_0^T \left(k_j \cdot u - R \cdot i_{fj} - \frac{\partial \Psi_j}{\partial \theta} \cdot \omega \right) dt, \quad j = 1, \dots, 4$$
(3.8)

gdje je *j* broj faze stroja. Fazne struje opisane jednadžbom (3.8) uvijek su pozitivne. Zbroj faznih struja, uzimajući u obzir vode li tranzistori ili diode pojedine faze, daju struju sabirnica i_0 :

$$i_0 = \sum_{j=1}^{4} \left(-k_j \cdot i_{f,j} \right), \quad j = 1, \dots, 4$$
(3.9)

Struja sabirnica i_0 se dijeli na struju i_C koja teče prema kondenzatoru C i struju i_t koja teče prema trošilu R_t . Stoga struja i_C iznosi:

$$i_C = i_0 - i_t = \sum_{j=1}^{4} \left(-k_j \cdot i_{jj} \right) - i_t, \quad j = 1, \dots, 4$$
(3.10)

Kada je poznata struja i_C , napon na kondenzatoru, koji je ujedno i napon između sabirnica u, određen je jednadžbom:

$$u = \int_{0}^{T} i_C \cdot dt + U_0 \tag{3.11}$$

gdje je U_0 početni napon kondenzatora. Struja trošila, određena je naponom u i otporom trošila R_i :

$$i_t = \frac{u}{R_t} \tag{3.12}$$

Kod klasičnog modela, jednadžbom (3.8) određuju se fazne struje SRG-a. Sustavom jednadžbi (3.9) – (3.12) određuju se struje koje teku u asimetričnom mosnom pretvaraču i napon između sabirnica pretvarača.

3.1. Prikaz magnetskih karakteristika drugom parcijalnom sumom Fourierovog reda

Nadomjesna shema prikazana na slici 3.3 i sustav jednadžbi (3.7) - (3.12) temelj su za izradu simulacijskog klasičnog modela SRG-a spojenog na asimetrični mosni pretvarač u Matlab/Simulinku. Jednadžbom (3.7) računa se iznos fazne struje *i_f*. Kutna brzina vrtnje ω , napon između sabirnica *u* i sklopno stanje tranzistora *k* ulazne su varijable SRG-a te su poznate u svakom trenutku simulacije. Otpor faznog namota i ovisnost magnetskog toka faze o faznoj struji i položaju rotora predstavljaju ulazne parametre na temelju kojih se pristupa izradi klasičnog modela SRM-a. Kako je toplinski koeficijent bakra relativno nizak i SRM pri radu ostaje hladan na dodir [24], može se smatrati da otpor namota praktički ima konstantnu vrijednost. U radovima [18, 20, 44, 61, 65, 67, 70, 71, 76, 90, 93, 97-99] magnetske karakteristike su predstavljene drugom parcijalnom sumom Fourierovog reda te je taj pristup primijenjen i u ovom radu. Magnetski tok u ovisnosti o faznoj struji *i_f* i relativnom položaju rotora θ u obliku druge parcijalne sume Fourierovog reda glasi:

$$\Psi(i_f, \theta) = \sum_{l=0}^{2} C_l(i_f) \cdot \cos(6 \cdot l \cdot \theta)$$
(3.13)

U jednadžbi (3.13) broj 6 se odnosi na broj rotorskih polova. Da bi se područje relativnog položaja statorskog i rotorskog pola od -30° do 30° preslikalo u 360° potrebno je položaj θ pomnožiti sa 6. U jednadžbi (3.13) nepoznanica su koeficijenti C_l (C_0 , C_1 i C_2). Ako je poznat magnetski tok $\psi(i_f, \theta)$ za bilo koja tri različita položaja rotorskog pola θ , jednadžbom (3.13) može se postaviti sustav od tri jednadžbe iz kojih se mogu dobiti koeficijenti C_l . U literaturi je preporuka da se odredi ovisnost magnetskog toka o faznoj struji za položaj potpunog preklapanja $\theta_{pp} = 0^{\circ}$, položaj koji se nalazi na polovici između položaja potpunog preklapanja i potpunog nepreklapanja $\theta_{m} = 15^{\circ}$ i položaj potpunog nepreklapanja $\theta_{pn} = 30^{\circ}$. Uvrštavanjem tih položaja rotora u jednadžbu (3.13) dobiva se sustav jednadžbi:

$$\begin{bmatrix} \Psi_{pp} \\ \Psi_{m} \\ \Psi_{pn} \end{bmatrix} = \begin{bmatrix} 1 & \cos(6 \cdot 0^{\circ}) & \cos(12 \cdot 0^{\circ}) \\ 1 & \cos(6 \cdot 15^{\circ}) & \cos(12 \cdot 15^{\circ}) \\ 1 & \cos(6 \cdot 30^{\circ}) & \cos(12 \cdot 30^{\circ}) \end{bmatrix} \begin{bmatrix} C_{0} \\ C_{1} \\ C_{2} \end{bmatrix}$$
(3.14)

iz čega se dobiva:

$$\begin{bmatrix} C_0 \\ C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 1/4 & 1/2 & 1/4 \\ 1/2 & 0 & -1/2 \\ 1/4 & -1/2 & 1/4 \end{bmatrix} \begin{bmatrix} \Psi_{pp} \\ \Psi_m \\ \Psi_{pn} \end{bmatrix}$$
(3.15)

Magnetski tokovi za položaje θ_{pp} , θ_m i θ_{pn} označeni su kao ψ_{pp} i ψ_m i ψ_{pn} , slijedom. Ovisnost ovih magnetskih tokova o faznoj struji i_f mogu se aproksimirati polinomom. U radovima [71, 97, 99] predložena je aproksimacija polinomima petog stupnja te je i u ovom radu napravljeno isto. Pri položaju potpunog nepreklapanja nema utjecaja zasićenja pa se ψ_{pn} može se zapisati kao linearna jednadžba. Konačno, jednadžbe koje aproksimiraju ovisnost magnetskih tokova ψ_{pp} , ψ_m i ψ_{pn} o faznoj struji glase:

$$\psi_{pp}(i_f) = \sum_{l=1}^{5} a_{ppl} \cdot i_f^l$$

$$\psi_m(i_f) = \sum_{l=1}^{5} a_{ml} \cdot i_f^l$$

$$\psi_{pn}(i_f) = a_{pn} \cdot i_f$$
(3.16)

pri čemu su a_{ppl} , a_{ml} i a_{pn} koeficijenti polinoma koji se određuju iz izmjerenih podataka dobivenih eksperimentom istosmjerne uzbude za tri položaja $\theta_{pp} = 0^\circ$, $\theta_m = 15^\circ$ i $\theta_{pn} = 30^\circ$.

Na slici 3.4 prikazana je shema električnog kruga za provođenje eksperimenta istosmjerne uzbude.

Slika 3.4. Shema električnog kruga za provođenje eksperimenta istosmjerne uzbude

Eksperiment zahtijeva da se rotor zakoči na određenom položaju. Uklapanjem tranzistora, na namot se dovodi istosmjerni napon U_{dc} . Nakon što fazna struja i_f dostigne željenu vrijednost,

tranzistori se isklapaju. Sve dok fazna struja ne padne na nulu, na namotu je napon $-U_{dc}$. Da bi se odredio magnetski tok u zadanom položaju rotora, potrebno je snimiti odziv fazne struje i napona na namotu stroja. U ovom radu, napon U_{dc} iznosio je 170 V, a ostvaren je serijskim spajanjem akumulatorskih baterija. Impuls za uklop i isklop tranzistora zadan je pomoću računala. Očekivana maksimalna vršna fazna struja u pogonu SRG-a je 10 A pa je i eksperiment istosmjerne uzbude ostvaren za tu vrijednost. Odzivi fazne struje i napona snimljeni su osciloskopom čija je frekvencija uzorkovanja 100 kHz, odnosno period uzorkovanja je $T_s = 10 \ \mu s$.

Slika 3.5 prikazuje odziv struje i napona kod eksperimenta istosmjerne uzbude za položaj $\theta = 0^{\circ}$. Tranzistori su uklopljeni u vremenskom intervalu od $t_1 = 0,005$ s do $t_2 = 0,01223$ s sa slike 3.5. Struja kroz namot tada raste i napon na namotu je pozitivan. Kada se tranzistori isklope u trenutku $t_2 = 0,01223$ s, prikazanom na slici 3.5, napon na namotu postaje negativan pa struja pada. Eksperiment je ponovljen i za položaje $\theta = 15^{\circ}$ i $\theta = 30^{\circ}$.

Slika 3.5. Struja i napon kod eksperimenta istosmjerne uzbude pri položaju $\theta = 0^{\circ}$

Procjena magnetskog toka temelji se na sljedećoj jednadžbi:

$$\Psi(t) = \int_0^{T_t} e \cdot dt + \Psi_0 \tag{3.17}$$

gdje je T_t vrijeme trajanja eksperimenta istosmjerne uzbude. Pretpostavlja se da je magnetski tok do trenutka uklapanja tranzistora $\Psi_0 = 0$ Wb. Ta pretpostavka vrijedi za klasični model jer se remanentni magnetskih tok kod njega zanemaruje. Induciranu elektromotornu silu *e* iz jednadžbe 33 (3.17) može se dobiti tako da se od napona na namotu u oduzme pad napona na otporu namota čime se dobiva:

$$\Psi(t) = \int_0^{T_t} (u - R \cdot i_f) \cdot dt \tag{3.18}$$

Diskretizacijom jednadžbe (3.18) s vremenom uzorkovanja T_s dobiva se:

$$\Psi(q_e \cdot T_s) = \left(u(q_e \cdot T_s) - R \cdot i_f(q_e \cdot T_s)\right) \cdot T_s + \Psi\left((q_e - 1) \cdot T_s\right), \quad j = 2...2500$$
(3.19)

gdje $\psi(q_e \cdot T_s)$ označava magnetski tok u koraku uzorkovanja q_e . Magnetski tok u koraku $q_e = 1$, iznosi 0 Wb. Broj koraka u svakom eksperimentu je 2500 jer se struja i napon uzorkuju s vremenom uzorkovanja 10 µs tijekom 25 ms.

Koeficijenti polinoma a_{ppl} , a_{ml} (l = 1,...,5) i a_{pn} u jednadžbama (3.16) dobiveni su *Matlabovim* alatom *Basic Fitting Tool* i navedeni su u prilogu B. Na slici 3.6 prikazan je aproksimirani magnetski tok i eksperimentalno određeni magnetski tok u ovisnosti o faznoj struji za položaje θ_{pp} , θ_m i θ_{pn} . Crvenim točkama su označeni magnetski tokovi dobiveni eksperimentalno, a plave krivulje predstavljaju aproksimacijske polinome. Jasno je da kod podataka dobivenih eksperimentalno postoji razlika između krivulje magnetiziranja i razmagnetiziranja. Ta razlika nastaje zbog gubitaka u željezu. Budući da se kod klasičnog modela gubici u željezu zanemaruju, aproksimacijski polinomi su dobiveni ravnopravno uzimajući u obzir točke magnetiziranja i razmagnetiziranja.

Slika 3.6. Aproksimirani magnetski tok i eksperimentalno određeni u ovisnosti o faznoj struji za tri položaja

Dakle, za poznatu faznu struju *i_f* moguće je odrediti magnetske tokove ψ_{pp} , ψ_{pn} i ψ_{pn} pomoću jednadžbi (3.16). Uvrštavanjem tih magnetskih tokova u jednadžbu (3.15) dobivaju se koeficijenti C_0 , $C_{1i}C_2$. Uvrštavanjem tih koeficijenata u jednadžbu (3.13) i poznavajući položaj rotora θ dobiva se izračunati magnetski tok jedne faze u funkciji položaja rotora i fazne struje (slika 3.7).

Slika 3.7. Magnetski tok jedne faze u funkciji položaja rotora i fazne struje

Sve do sada navedeno je vrijedilo uz pretpostavku poznate fazne struje *i_f*. Kod klasičnog simulacijskog modela se do ove struje dolazi pomoću jednadžbe (3.8), za svaku od faznih struja. Ova jednadžba zahtijeva određivanje derivacije magnetskog toka po faznoj struji i po položaju. Iz jednadžbe (3.13) dobiva se:

$$\frac{\partial \Psi}{\partial i_f}(i_f, \theta) = \sum_{l=0}^2 \frac{dC_l}{di_f}(i_f) \cdot \cos(6 \cdot l \cdot \theta)$$
(3.20)

Prema jednadžbi (3.15) derivacije koeficijenata C_l po faznoj struji i_f glase:

$$\frac{\partial C_0}{\partial i_f} \\
\frac{\partial C_1}{\partial i_f} \\
\frac{\partial C_2}{\partial i_f} \end{bmatrix} = \begin{bmatrix} 1/4 & 1/2 & 1/4 \\ 1/2 & 0 & -1/2 \\ 1/4 & -1/2 & 1/4 \end{bmatrix} \begin{bmatrix} \partial \Psi_{pp} \\
\frac{\partial \Psi_m}{\partial i_f} \\
\frac{\partial \Psi_{pn}}{\partial i_f} \\
\frac{\partial \Psi_{pn}}{\partial i_f} \end{bmatrix}$$
(3.21)

Derivacije magnetskih tokova ψ_{pp} , ψ_m i ψ_{pn} , koji se pojavljuju u jednadžbi (3.21), dobivaju se iz jednadžbi (3.16):

$$\frac{d\Psi_{pp}}{di_f} = \sum_{l=1}^{5} l \cdot a_{ppl} \cdot i_f^{l-1}$$

$$\frac{d\Psi_m}{di_f} = \sum_{l=1}^{5} l \cdot a_{ml} \cdot i_f^{l-1}$$

$$\frac{d\Psi_{pn}}{di_f} = a_{pn}$$
(3.22)

Konačno, iz jednadžbi (3.20) – (3.22) dobiva se izraz za parcijalnu derivaciju magnetskog toka po faznoj struji:

$$\frac{\partial \Psi}{\partial i_{f}}(i_{f};\theta) = \left[\frac{1}{4} \cdot \sum_{l=1}^{5} l \cdot a_{ppl} \cdot i_{f}^{l-1} + \frac{1}{2} \cdot \sum_{l=1}^{5} l \cdot a_{ml} \cdot i_{f}^{l-1} + \frac{1}{4} \cdot a_{pn}\right] \\ + \cos(6\cdot\theta) \left[\frac{1}{2} \cdot \sum_{l=1}^{5} l \cdot a_{ppl} \cdot i_{f}^{l-1} - \frac{1}{2} \cdot a_{pn}\right]$$

$$+ \cos(12\cdot\theta) \left[\frac{1}{4} \cdot \sum_{l=1}^{5} l \cdot a_{ppl} \cdot i_{f}^{l-1} - \frac{1}{2} \cdot \sum_{l=1}^{5} l \cdot a_{ml} \cdot i_{f}^{l-1} + \frac{1}{4} \cdot a_{pn}\right]$$

$$(3.23)$$

Promjenu magnetskog toka po položaju dobiva se deriviranjem jednadžbe (3.13) po položaju rotora θ čime se dobiva:

$$\frac{\partial \psi(i_f, \theta)}{\partial \theta} = -\sum_{l=1}^{2} 6 \cdot l \cdot C_l(i_f) \cdot \sin(6 \cdot l \cdot \theta)$$
(3.24)

Elektromagnetski moment jedne faze SRG-a opisuje se jednadžbom:

$$M_{f}(i_{f},\theta) = \frac{\partial W_{c}(i_{f},\theta)}{\partial \theta} = \frac{\partial \int_{0}^{i_{f}} \psi(i_{f},\theta) \cdot di_{f}}{\partial \theta}$$
(3.25)

U jednadžbi (3.25) W_c označava magnetsku koenergiju. Da bi se dobio izraz za elektromagnetski moment jedne faze SRG-a potrebno je magnetski tok (jednadžba (3.13)) integrirati po faznoj struji i derivirati po položaju rotora čime se dobiva:

$$M_f(i_f;\theta) = -\sum_{l=1}^2 6 \cdot l \cdot \int_0^{i_f} C_l(i_f) \cdot \sin(6 \cdot l \cdot \theta) \cdot di_f$$
(3.26)

Prema jednadžbi (3.15) integrali koeficijenata C_1 i C_2 po faznoj struji i_f glase:

$$\int_{0}^{i_{f}} C_{1} \cdot di_{f} = \frac{1}{2} \cdot \left(\int_{0}^{i_{f}} \psi_{pp} \cdot di_{f} - \int_{0}^{i_{f}} \psi_{pn} \cdot di_{f} \right)$$

$$\int_{0}^{i_{f}} C_{2} \cdot di_{f} = \frac{1}{2} \cdot \left[\frac{1}{2} \cdot \left(\int_{0}^{i_{f}} \psi_{pp} \cdot di_{f} + \int_{0}^{i_{f}} \psi_{pn} \cdot di_{f} \right) - \int_{0}^{i_{f}} \psi_{m} \cdot di_{f} \right]$$
(3.27)

Integrali magnetskih tokova ψ_{pp} , ψ_m i ψ_{pn} (prema jednadžbama (3.16)) glase:

$$\int_{0}^{i_{f}} \Psi_{pp} di_{f} = \sum_{l=1}^{5} \frac{1}{l+1} a_{pp} i_{f}^{l+1}$$

$$\int_{0}^{i_{f}} \Psi_{m} di_{f} = \sum_{l=1}^{5} \frac{1}{l+1} a_{ml} i_{f}^{l+1}$$

$$\int_{0}^{i_{f}} \Psi_{pn} di_{f} = \frac{1}{2} a_{pn} i_{f}^{2}$$
(3.28)

Konačno, iz jednadžbi (3.26) - (3.28) dobiva se izraz za elektromagnetski moment jedne faze SRG-a:

$$M_{f}(i_{f},\theta) = -3 \cdot \sin(6 \cdot \theta) \cdot \left[\sum_{l=1}^{5} \frac{1}{l+1} a_{ppl} \cdot i_{f}^{l+1} - \frac{1}{2} a_{pn} \cdot i_{f}^{2} \right]$$

$$-6 \cdot \sin(12 \cdot \theta) \left[\frac{1}{2} \cdot \sum_{l=1}^{5} \frac{1}{l+1} \cdot a_{ppl} \cdot i_{f}^{l+1} + \frac{1}{4} \cdot a_{pn} \cdot i_{f}^{2} - \sum_{l=1}^{5} \frac{1}{l+1} \cdot a_{ml} \cdot i_{f}^{l+1} \right]$$

$$(3.29)$$

Uvrštavanjem koeficijenata a_{ppl} , a_{ml} i a_{pn} iz priloga B u jednadžbu (3.29) dobiva se elektromagnetski moment jedne faze SRG-a u ovisnosti o kutu zakreta rotora i faznoj struji (slika 3.8).

Slika 3.8. Elektromagnetski moment jedne faze SRG-a u ovisnosti o kutu zakreta rotora i faznoj struji

Elektromagnetski moment jedne faze SRG-a pri položaju $\theta = 0^{\circ}$ je jednak nuli. Pri položajima $\theta = -30^{\circ}$ i $\theta = 30^{\circ}$, dva susjedna rotorska pola su jednako udaljena od statorskog pola. Tu je magnetski tok minimalan, ali ipak veći od nule pa se može očekivati da postoji i elektromagnetski moment. Taj elektromagnetski moment na dva navedena rotorska pola djeluje istim iznosom, ali suprotnim smjerom tako da je ukupni elektromagnetski moment jednak nuli. Pozitivan elektromagnetski moment podrazumijeva motorski način rada, a negativan generatorski.

3.2. Simulacija klasičnog modela u Matlab/Simulinku

Klasični model SRG-a spojenog na asimetrični mosni pretvarač napravljen je u Matlab/Simulinku. Temelji se na nadomjesnoj shemi prikazanoj na slici 3.3 i sustavu jednadžbi (3.7) – (3.12). Namot stroja je modeliran kao serijski spoj induktiviteta i otpora namota, a međuinduktivitet susjednih faza, gubici u željezu i remanentni magnetski tok su zanemareni. Tranzistori i diode u granama asimetričnog mosnog pretvarača modelirani su kao idealni.

Prvo je napravljen simulacijski model jedne faze stroja koji se temelji na jednadžbi (3.7), a zatim je na temelju jednadžbi (3.8) – (3.12) napravljen cjeloviti model SRG-a. Na slici 3.9 prikazan je blokovski model jedne faze SRG-a u obliku prikladnom za Matlab/Simulink.

Slika 3.9. Blokovska shema jedne faze za klasični model SRG-a

Sklopno stanje tranzistora određuje se na temelju položaja rotora te položaja uklapanja i isklapanja tranzistora. Ako je položaj rotora između položaja uklapanja i položaja isklapanja k = 1, inače je k = -1. Na temelju fazne struje i položaja rotora pomoću jednadžbi (3.24), (3.23) i (3.29) određuju se parcijalna derivacija magnetskog toka po položaju i po faznoj struji te elektromagnetski moment jedne faze, slijedom. Slika 3.10 prikazuje simulacijski model jedne faze za klasični model SRG-a u Matlab/Simulinku koji se temelji na blokovskoj shemi prikazanoj na slici 3.9.

Slika 3.10. Simulacijski model jedne faze za klasični model SRG-a u Matlab/Simulinku

Na slici 3.10 žutom su bojom označeni *Rate transition* blokovi. Njihova svrha je da razdvoje dijelove simulacije koji se izvode s fiksnim korakom uzorkovanja od onih koje se izvode s varijabilnim korakom uzorkovanja. U fiksnim diskretnim koracima frekvencije uzorkovanja 20 kHz simulira se sve što u stvarnom sustavu izvodi na računalu, a to je izračun sklopnog stanja tranzistora i uzorkovanje fazne struje. Taj dio modela označen je crvenom bojom. Za upravljanje laboratorijskom maketom korištena je upravljačka kartica DS1104 proizvođača dSpace koja za razmatrani algoritam pouzdano radi do frekvencija uzorkovanja od 20 kHz pa je upravo ta frekvencija korištena da bi simulacija bila usporediva s mjerenjem. Ostatak modela faze se izvodi s promjenjivim korakom uzrokovanja jer se odnosi na kontinuirane komponente u stvarnom sustavu, odnosno na sam SRG i asimetrični mosni pretvarač. Na slici 3.10 fazna struja se množi s -k jer to zahtijeva jednadžba (3.9) kojom se određuje struja sabirnica i_0 .

Kada je određena blokovska shema za jednu fazu SRG-a, napravljena je blokovska shema SRG-a, asimetričnog mosnog pretvarača i trošila zajedno s regulacijskim sustavom napona između sabirnica. Ona se temelji na jednadžbama (3.9) – (3.12) i prikazana je na slici 3.11.

Slika 3.11. Blokovska shema simulacije SRG-a koji je opterećen radnim trošilom R₁ pri čemu je SRG napajan asimetričnim mosnim pretvaračem

Regulacija napona između sabirnica ostvarena je pomoću PI regulatora. Opisana je u poglavlju 2.4 te je primijenjena u klasičnom modelu SRG-a. Proporcionalno pojačanje regulatora iznosi $K_p = 1$, dok integracijsko pojačanje iznosi $K_i = 5$. Ove vrijednosti su određene metodom pokušaja i pogreške. Veće proporcionalno pojačanje može rezultirati nestabilnošću sustava, a manje pojačanje uzrokuje sporiji odziv. Veće integracijsko pojačanja može izazvati oscilacije, a manje uzrokuje sporo približavanje referentnoj vrijednosti napona između sabirnica. Položaj rotora θ i kutna brzina vrtnje stroja ω poznati su u svakom trenutku simulacije. Blokovi simulacija faze j (j = 1,...,4) prikazani na slici 3.11 predstavljaju blokovsku shemu j-te faze prikazane na slici 3.9. Uzimajući u obzir sklopno stanje tranzistora k i iznos faznih struja, primjenom jednadžbe (3.9) određuje se struja kroz sabirnice asimetričnog mosnog pretvarača i₀. Od struje između sabirnica oduzima se struja kroz trošilo i_t , čime se jednadžbom (3.10) dobiva struja i_c koja teče prema kondenzatoru C. Napon na kondenzatoru je ujedno i napon između sabirnica pretvarača te se on određuje na temelju jednadžbe (3.11). Kada je poznat napon između sabirnica, može se odrediti struja kroz trošilo i_t jednadžbom (3.12). Elektromagnetski moment SRG-a M računa se kao suma elektromagnetskih momenata svih faza stroja. Slika 3.12 prikazuje model SRG-a koji je opterećen radnim trošilom R_i , pri čemu je SRG napajan asimetričnim mosnim pretvaračem. Model je izrađen u Matlab/Simulinku i temelji se na blokovskoj shemi prikazanoj na slici 3.11.

Slika 3.12. Simulacijski model SRG-a koji je opterećen radnim trošilom R_t pri čemu je SRG napajan asimetričnim mosnim pretvaračem u Matlab/Simulinku

Na slici 3.12 pomoću *Rate Transition* blokova koji su označeni žutom bojom također su razdvojeni dijelovi simulacije koji se izvode s fiksnim korakom uzorkovanja od onih koje se izvode s varijabilnim korakom uzorkovanja. U fiksnim koracima uzorkuju se napon između sabirnica i moment. PI regulator također radi s fiksnim korakom uzorkovanja. Ostatak modela odnosi se na SRG, asimetrični modni pretvarač i trošilo, stoga su oni modelirani s varijabilnim korakom uzorkovanja.

4. NAPREDNI MATEMATIČKI MODEL PREKIDAČKOG RELUKTANTNOG GENERATORA S ASIMETRIČNIM MOSNIM PRETVARAČEM

U ovom poglavlju opisan je postupak izrade naprednog modela 8/6 SRG-a koji je opterećen radnim trošilom R_t , pri čemu je SRG napajan asimetričnim mosnim pretvaračem. Ovaj model, za razliku od klasičnog, uključuje međuindukciju susjednih faza, gubitke u željezu i remanentni magnetski tok, koji se pojedinačno uključuju u nadomjesnu shemu jedne faze SRG-a dane za klasični model (slika 3.1). Na temelju takve napredne nadomjesne sheme jedne faze SRG-a izrađuje se pripadajući matematički model.

Napredni model u obzir uzima tri magnetska toka: magnetski tok koji nastaje samoindukcijom, remanentni magnetski tok i magnetski tok nastao zbog međuinduktivne veze. Poglavlje 4.1 bavi se određivanjem remanentnog magnetskog toka i njegovim integriranjem u napredni model. Proces određivanja i uključenja magnetskog toka u napredni model opisan je u poglavlju 4.2. Magnetski tok koji nastaje zbog međuinduktivne veze opisan je u poglavlju 4.3. Utjecaj gubitaka u željezu usko je povezan s magnetskim tokom stoga je postupak njegovog određivanja i uključenja u napredni model također opisan u poglavlju 4.2. U poglavlju 4.4 predstavljen je simulacijski napredni model 8/6 SRG-a izrađen u Matlab/Simulinku.

4.1. Određivanje remanentnog magnetskog toka prekidačkog reluktantnog stroja

U ovom poglavlju opisano je određivanje remanentnog magnetskog toka i njegovo uključenje u nadomjesnu shemu jedne faze SRG-a spojenog na asimetrični mosni pretvarač. Magnetske domene u željezu poravnavaju se u smjeru vanjskog magnetskog polja koje na to željezo djeluje. Remanentni magnetski tok nastaje zbog nemogućnosti povratka svih domena u nasumični položaj nakon što se vanjsko magnetsko polje ukloni. Može se pretpostaviti da statorski i rotorski pol podjednako doprinose remanentnom magnetskom toku. Ako se remanentni magnetski tok eliminira izmjeničnim naponom, a zatim na razmatranoj fazi napravi eksperiment istosmjerne uzbude za zadani položaj rotora, iz izmjerene struje i napona dobivaju se krivulje magnetiziranja i razmagnetiziranja slične prikazanim na slici 4.1. Na toj slici magnetski tok koji se dobiva iz navedenog eksperimenta označen je s ψ_e .

Slika 4.1. Magnetiziranje i razmagnetiziranje faze stroja uz prethodnu eliminaciju remanencije

Na početku ovog eksperimenta, remanentni magnetski tok je nula. Budući da se faza stroja magnetizira, remanentni magnetski tok raste. U trenutku kada započne razmagnetiziranje faze stroja, remanentni magnetski tok ima iznos ψ_r što je maksimalna moguća vrijednost za zadani položaj rotora. Pretpostavlja se da taj iznos ostaje konstantan za vrijeme razmagnetiziranja faze stroja. Stoga će remanentni magnetski tok ψ_r ostati zabilježen u magnetskoj karakteristici kada struja padne na nulu kako je to prikazano na slici 4.1. Remanentni magnetski tok ψ_r je teško precizno odrediti iz podataka dobivenih navedenim eksperimentom istosmjerne uzbude, jer kako se fazna struja *i_f* približava nuli, mjerni šum počinje dominirati. U nastavku je opisan postupak određivanja remanentnog magnetskog toka ψ_r koji zaobilazi ovaj problem. Odmah nakon navedenog eksperimenta istosmjerne uzbude potrebno je izvesti još jedan eksperiment istosmjerne uzbude, ali bez prethodne eliminacije remanentnog magnetskog toka pomoću izmjeničnog napona. U ovom slučaju remanentni magnetski tok ima vrijednost ψ_r cijelo vrijeme i ne mijenja se s promjenom fazne struje. Stoga, polazeći od ove pretpostavke remanentni magnetski tok nema utjecaj na induciranu elektromotornu silu te ne može biti zabilježen u drugom eksperimentu. Iz drugog eksperimenta dobivaju se krivulje magnetiziranja i razmagnetiziranja koje su slične onima prikazanim na slici 4.2. Na toj slici magnetski tok koji se dobiva iz navedenog eksperimenta označen je s ψ_e '. U ovom slučaju, krivulja razmagnetiziranja pri struji od 0 A imat će iznos od 0 Wb.

Slika 4.2. Magnetiziranje i razmagnetiziranje faze stroja bez prethodne eliminacije remanencije

Kod oba eksperimenta, prilikom razmagnetiziranja, remanentni magnetski tok ima istu vrijednost ψ_r . Krivulja razmagnetiziranja iz prvog eksperimenta uključuje maksimalni remanentni magnatski tok ψ_r , a krivulja razmagnetiziranja iz drugog eksperimenta ga ne sadrži. Slika 4.3 prikazuje krivulje razmagnetiziranja iz prvog (slika 4.1) i drugog eksperimenta (slika 4.2). Razlika između te dvije krivulje je iznos remanentnog magnetskog toka ψ_r za određeni položaj rotora. Određena je razlika između krivulja za svakih 0,5 A u rasponu od 0 A do 10 A, a zatim je izračunata srednja vrijednost tih razlika te je tako dobiven remanentni magnetski tok ψ_r za zadani položaj rotora.

Slika 4.3. Razmagnetiziranje faze stroja s prethodnom eliminacijom remanencije i bez nje

U ovom radu ψ_r je određen za položaje od 2° do 30° za svaka 2°. Na slici 4.4 prikazan je remanentni magnetski tok ulančen razmatranom fazom, ψ_r i njegova linearna aproksimacija. On ima maksimalnu vrijednost pri položaju potpunog preklapanja $\theta = 0^\circ$ te ona iznosi $\Psi_{rmax} = 0,0314$ Wb. Za položaje od -30° do $0^\circ \psi_r$ je zrcalno simetričan s obzirom na os ordinata na slici 4.4.

Slika 4.4. Eksperimentalno određeni remanentni magnetski tok ulančen razmatranom fazom i njegova linearna aproksimacija

Linearna jednadžba kojom je opisana ovisnost magnetskog toka ψ_r ulančenog razmatranom fazom o položaju je:

$$\Psi_r = \Psi_{rmax} \cdot (-\text{sign}(\theta) \cdot 0,033 \cdot \theta + 1) \tag{4.1}$$

Sve do sad navedeno vrijedilo je za zakočen rotor i uz doprinos statorskog i rotorskog pola remanentnom magnetskom toku. U pogonu SRG-a rotor se vrti pa silnice remanentnog magnetskog toka rotorskog pola prolaze kroz fazne namote inducirajući elektromotornu silu pa je remanenciju u rotorskom polu potrebno uzeti u obzir. Svaka faza SRG-a uvijek se magnetizira u istom smjeru tako da remanentni magnetski tok u statorskom polu uvijek ima maksimalnu vrijednost. Silnice remanentnog magnetskog toka u statorskom polu se ne mijenjaju pa ne induciraju napon, tako da se utjecaj remanencije u statorskom polu na induciranu elektromotornu silu može zanemariti.

Pretpostavlja se da statorski i rotorski pol podjednako pridonose remanentnom magnetskom toku, stoga maksimalni remanentni magnetski tok rotorskog pola iznosi $0.5 \cdot \Psi_{rmax}$. Budući da se

rotor vrti, remanentni magnetski tok rotorskog pola se mijenja pod utjecajem magnetskog toka faza kraj kojih prolazi. Eksperiment istosmjerne uzbude za maksimalnog remanentnog magnetskog toka proveden je pri položaju $\theta = 0^{\circ}$ i faznoj struji 10 A pa je pretpostavljeno da je postignut dovoljno velik magnetski tok da se postigne maksimalni remanentni magnetski tok. U pogonu, rotorski pol se u položaju $\theta = 0^{\circ}$ nalazi kratkotrajno, a struje od 10 A se u pravilu postižu pri nazivnom opterećenju i položaju rotora $\theta = 30^{\circ}$ gdje je induktivitet najmanji. Iz tog razloga može se pretpostaviti da svaka od faza stroja promijeni remanentni magnetski tok rotorskog pola u smjeru svog magnetskog toka samo djelomično, a ne u potpunosti kao što je slučaj kod eksperimenta istosmjerne uzbude. Na slici 4.5 strelicama je prikazan smjer magnetskog toka u svakom od statorskih polova.

Slika 4.5. Smjer silnica magnetskog toka u statorskim polovima

Da bi se objasnila promjena remanentnog magnetskog toka u rotorskom polu, pretpostavljeno je da faze počinju voditi pri položaju uklapanja $\theta_u = -10^\circ$. Položaj uklapanja drugačiji od ovoga ne mijenja bitno fizikalno objašnjenje koje slijedi. Na slici 4.6 strelicom na rotoru je prikazan remanentni magnetski tok rotorskog pola u trenutku kada pojedina faza počinje voditi. Važno je istaknuti da se remanentni magnetski tok uzima s pozitivnim predznakom kada se njegov smjer poklapa sa smjerom magnetskog toka pojedine faze, inače je negativan. Ovakvo označavanje predznaka remanentnog magnetskog toka rotorskog pola je napravljeno zato što se u nadomjesnoj shemi SRG-a pozitivna inducirana elektromotorna sila protivi porastu struje faze, a negativna elektromotorna sila potpomaže porast struje faze. Nadalje, proces promjene smjera remanentnog magnetskog toka u rotorskom polu je prirodno kontinuiran i mijenja se od $0,5 \cdot \Psi_{rmax}$ do $-0,5 \cdot \Psi_{rmax}$ kako to prikazuje slika 4.6. Radi jednostavnijeg modeliranja, ova promjena se modelira kao diskretna te se smatra da ne postoji promjena remanentnog magnetskog toka rotora u zoni utjecaja pojedine faze (položaj rotora od -30° do 30°) nego tek kada ovu zonu rotorski pol napusti. Detaljnije objašnjenje ovakvog načina modeliranja slijedi u nastavku.

Slika 4.6. Promjena remanentnog magnetskog toka pod utjecajem magnetskog toka svih faza

Kada četvrta faza počne voditi, pretpostavlja se da remanentni magnetski tok rotorskog pola iznosi $0.5 \cdot \Psi_{rmax}$. Kako je to maksimalni iznos koji remanentni magnetski tok rotorskog pola može imati te je magnetski tok četvrte faze u smjeru remanentnog magnetskog toka, on će ostati nepromijenjen cijelo vrijeme dok četvrta faza vodi. To se može zapisati kao $\Psi_{rp,F4} = 0.5 \cdot \Psi_{rmax}$. Deriviranjem jednadžbe (4.1) po vremenu i pod pretpostavkom da remanentni magnetski tok u razmatranom rotorskom polu iznosi $0.5 \cdot \Psi_{rmax}$ dobiva se sljedeća jednadžba za elektromotornu silu koju će u namotu četvrte faze izazivati prolazak tog rotorskog pola:

$$e_{r,4} = 0.5 \cdot \Psi_{rmax} \cdot (-\text{sign}(\theta) \cdot 0.033) \cdot \frac{180^{\circ}}{\pi} \cdot \omega$$
(4.2)

Prema slici 4.6, nakon što razmatrani rotorski pol napusti područje četvrte faze, dolazi u područje prve faze. U trenutku kada provede prva faza, remanentni magnetski tok razmatranog
rotorskog pola i dalje ima isti iznos i smjer koji je imao dok je bio u području četvrte faze, kao što je već navedeno. Sa slike 4.6 je jasno da je remanentni magnetski tok razmatranog rotorskog pola u suprotnom smjeru od magnetskog toka prve faze. Zbog toga se može smatrati da u trenutku kada prva faza počne voditi on ima iznos $\Psi_{rp,F1} = -0.5 \cdot \Psi_{rmax}$ u odnosu na magnetski tok te faze. Dok vodi prva faza i razmatrani rotorski pol prolazi kroz njeno područje, remanentni magnetski tok u tom rotorskom polu ima tendenciju promjene zbog utjecaja magnetskog toka prve faze. Međutim, zbog pojednostavljenog matematičkog modeliranja, pretpostavlja se da remanentni magnetski tok ima konstantnu vrijednost cijelo vrijeme vođenje prve faze kao u trenutku kada je ta faza počela voditi. Sljedećom jednadžbom opisana je ta elektromotorna sila:

$$e_{r,1} = -0.5 \cdot \Psi_{rmax} \cdot (-\operatorname{sign}(\theta) \cdot 0.033) \cdot \frac{180^{\circ}}{\pi} \cdot \omega$$
(4.3)

Jednadžba (4.3) je ista kao i jednadžba (4.2), samo suprotnog predznaka.

Nakon što razmatrani rotorski pol napusti područje prve faze dolazi u područje druge faze, a nakon toga i treće. Može se pretpostaviti da će se remanentni magnetski tok pod utjecajem magnetskih tokova prve, druge i treće faze promijeniti od iznosa $-0.5 \cdot \Psi_{rmax}$, kada provede prva faza do iznosa $0.5 \cdot \Psi_{rmax}$, kada ponovno provede četvrta faza, u odnosu na magnetski tok svake od navedenih faza, kao što je prikazano na slici 4.6. Tada ukupna promjena remanentnog magnetskog toka u razmatranom rotorskom polu iznosi $|\Psi_{rmax}|$. Ako se uzme u obzir da svaka faza ravnopravno doprinosi promjeni remanentnog magnetskog toka rotora, onda je doprinos svake pojedine faze $0.33 \cdot |\Psi_{rmax}|$. Ove diskretne promjene remanentnog magnetskog toka razmatranog rotorskog pola u trenutku kada počne voditi svaka od faza stroja zapisuje se sljedećom jednadžbom:

$$\Psi_{rp,F1} = -0.5 \cdot \Psi_{rmax}$$

$$\Psi_{rp,F2} = \Psi_{rp,F1} + 0.33 \cdot |\Psi_{rmax}| = -0.5 \cdot 0.33 \cdot \Psi_{rmax}$$

$$\Psi_{rp,F3} = \Psi_{rp,F2} + 0.33 \cdot |\Psi_{rmax}| = 0.5 \cdot 0.33 \cdot \Psi_{rmax}$$

$$\Psi_{rp,F4} = \Psi_{rp,F3} + 0.33 \cdot |\Psi_{rmax}| = 0.5 \cdot \Psi_{rmax}$$
(4.4)

Kao što je i kod prve faze pretpostavljeno, može se pretpostaviti da remanentni magnetski tok ima konstantnu vrijednost cijelo vrijeme vođenja druge i treće faze kao u trenutku kada su te faze počele voditi. Deriviranjem jednadžbe (4.1) po vremenu i uvrštavanjem remanentnog magnetskog toka rotorskog pola koji vrijedi u odnosu na svaku fazu stroja iz jednadžbe (4.4) dobiva se sljedeća jednadžba koja opisuje elektromotornu silu koju inducira remanentni magnetski tok rotorskog pola u svakoj od faza stroja:

$$e_{r,1} = -0.5 \cdot \Psi_{rmax} \cdot (-\operatorname{sign}(\theta) \cdot 0.033) \cdot \frac{180^{\circ}}{\pi} \cdot \omega$$

$$e_{r,2} = -0.5 \cdot 0.33 \cdot \Psi_{rmax} \cdot (-\operatorname{sign}(\theta) \cdot 0.033) \cdot \frac{180^{\circ}}{\pi} \cdot \omega$$

$$e_{r,3} = 0.5 \cdot 0.33 \cdot \Psi_{rmax} \cdot (-\operatorname{sign}(\theta) \cdot 0.033) \cdot \frac{180^{\circ}}{\pi} \cdot \omega$$

$$e_{r,4} = 0.5 \cdot \Psi_{rmax} \cdot (-\operatorname{sign}(\theta) \cdot 0.033) \cdot \frac{180^{\circ}}{\pi} \cdot \omega$$
(4.5)

Jednadžba (4.5) jednako vrijedi za razmatrani rotorski pol, kao i za sve ostale rotorske polove. Na slici 4.7 prikazana je nadomjesna shema za jednu fazu SRG-a spojenu na jednu granu asimetričnog mosnog pretvarača, nadopunjena utjecajem remanentnog magnetskog toka. Taj utjecaj nadomješten je naponskim izvorom iznosa inducirane elektromotorne sile e_r koji je spojen u seriju s induktivitetom i otporom.

Slika 4.7. Nadomjesna shema jedne faze SRG-a koja uključuje remanentni magnetski tok spojen na jednu granu asimetričnog mosnog pretvarača

Prema jednadžbi (4.5), inducirani napon koji stvara promjena remanentnog magnetskog toka u drugoj i trećoj fazi ima efektivnu vrijednost oko 2 V pri 2000 r/min i 3 V pri 3000 r/min. U prvoj i četvrtoj fazi njegova efektivna vrijednost iznosi oko 6 V i 9 V.

4.2. Razdioba fazne struje po parametrima nadomjesne sheme prekidačkog reluktantnog stroja

Kada kroz fazni namot teče struja, zbog samoindukcije se stvara magnetski tok te on uzrokuje gubitke u željezu. Da bi se gubici u željezu uključili u model, u radovima [5, 6, 89, 106, 107] predloženo je da se u paralelu s induktivitetom doda otpor gubitaka u željezu R_m . To je prikazano na slici 4.8.

Slika 4.8. Nadomjesna shema jedne faze SRG-a spojene na jednu granu asimetričnog mosnog pretvarača s uključenim otporom gubitaka u željezu

Fazna struja se dijeli na struju i_L koja teče kroz induktivitet i struju i_m koja teče kroz nadomjesni otpor gubitaka u željezu. Struja i_L je odgovorna za izgradnju magnetskog toka, a struja i_m za gubitke u željezu. U ovom poglavlju je opisano određivanje tih dviju struja za različite iznose magnetskog toka i položaja rotora. Kao i remanentni magnetski tok, i_L i i_m su određene za 16 položaja rotora, što je uobičajeno u dostupnim radovima [48, 54, 58, 62, 92]. U prethodnom je poglavlju remanentni magnetski tok određen iz dva eksperimenta istosmjerne uzbude. U prvom je postojao utjecaj

remanentnog magnetskog toka, a u drugom nije. Dvije navedene struje određene su iz podataka dobivenih iz drugog eksperimenta istosmjerne uzbude. Kako u drugom eksperimentu nije bilo utjecaja remanentnog magnetskog toka na izmjerene vrijednosti, za potrebe objašnjenja dobivanja struja i_L i i_m u nadomjesnoj shemi sa slike 4.8 izostavljen je napon e_r prikazan na slici 4.7.

Na slici 4.9 prikazana je krivulja magnetiziranja i razmagnetiziranja faze SRG-a kada bi gubici u željezu bili zanemarivi, pri zakočenom rotoru u položaju θ . Tad bi se magnetiziranje i razmagnetiziranje odvijalo po istoj krivulji.

Slika 4.9. Magnetiziranje i razmagnetiziranje faze stroja uz zanemarive gubitke u željezu

Kako gubici u željezu ipak nisu zanemarivi, prilikom magnetiziranja će kroz fazni namot poteći struja i_{fM} koja se sastoji od struje i_L odgovorne za izgradnju magnetskog toka uvećane za struju i_m tako da vrijedi $i_{fM} = i_L + i_m$. Struja i_m se mijenja s promjenom magnetskog toka ψ . Krivulja magnetiziranja prikazana na slici 4.9 pomiče se u desno za iznos struje i_m , što je prikazano na sljedećoj slici:

Slika 4.10. Magnetiziranje faze stroja zakočenog SRG-a uz prisutne gubitke u željezu a) i tokovi struja u nadomjesnoj shemi b)

Kod razmagnetiziranja, kroz fazni namot poteći će struja i_{JR} koja se sastoji od struje i_L umanjene za struju i_m tako da vrijedi $i_{JR} = i_L - i_m$. Posljedica toga je da se krivulja magnetiziranja prikazana na slici 4.9 pomiče u lijevo za iznos i_m što je prikazano na sljedećoj slici:

Slika 4.11. Razmagnetiziranje faze stroja zakočenog SRG-a uz prisutne gubitke u željezu a) i tokovi struja u nadomjesnoj shemi b)

Na slici 4.12 prikazane su krivulje magnetiziranja i razmagnetiziranja dobivene iz eksperimenta istosmjerne uzbude, za zadani položaj rotora θ , bez utjecaja remanentnog magnetskog toka.

Slika 4.12. Magnetiziranje i razmagnetiziranje faze zakočenog SRG-a uz prisutne gubitke u željezu

Za zadani magnetski tok ψ , pri zakočenom rotoru u položaju θ , sa slike 4.12 mogu se odrediti dvije fazne struje: $i_{fM} = i_L + i_m$ dobivene prilikom magnetiziranja i $i_{fR} = i_L - i_m$ dobivene prilikom razmagnetiziranja. Iz zbroja te dvije struje dobiva se struja i_L sljedećom jednadžbom:

$$i_{fM} + i_{fR} = (i_L + i_m) + (i_L - i_m)$$

$$i_L = \frac{i_{fM} + i_{fR}}{2}$$
(4.6)

Slično, iz razlike tih dviju struja dobiva se struja *i_m* sljedećom jednadžbom:

$$i_{fM} - i_{fR} = (i_L + i_m) - (i_L - i_m)$$

$$i_m = \frac{i_{fM} - i_{fR}}{2}$$
(4.7)

Dakle, iz drugog eksperimenta istosmjerne uzbude koji je opisan u poglavlju 3.1, za zadani magnetski tok i položaj, određena je struja kroz induktivitet i struja kroz nadomjesni otpor gubitaka u željezu. Eksperiment istosmjerne uzbude napravljen je na stroju iz priloga A za fazne struje do 12 A, što je dvostruki iznos nazivne struje stroja, i za 16 položaja rotora u rasponu od 0° do 30° za svaka 2°. Iz dobivenih podataka napravljene su pregledne tablice $i_L(\theta, \psi)$ i $i_m(\theta, \psi)$. Ovisnost struje kroz induktivitet o položaju i magnetskom toku za stroj iz priloga A prikazana je na slici 4.13.

Slika 4.13. Ovisnost struje kroz induktivitet o položaju i magnetskom toku

Ovisnost struje kroz nadomjesni otpor gubitaka u željezu o položaju i magnetskom toku za stroj iz priloga A prikazana je na slici 4.14. Kako su krivulje magnetiziranja i razmagnetiziranja

međusobno blizu, struja kroz nadomjesni otpor gubitaka u željezu dobivena eksperimentalno pomoću jednadžbe (4.7) ima značajan mjerni šum pa su podaci prikazani na slici 4.14 prethodno filtrirani algoritmom opisanim u prilogu C. Kao rubni uvjet postavljeno je da struja i_m ima iznos 0 A kada je magnetski tok 0 Wb i 1 Wb. Ako je magnetski tok 0 Wb onda ne postoje gubici u željezu pa struja i_m iznosi 0 A. S druge strane, ako magnetski tok ima iznos 1 Wb, faza se nalazi u dubokom magnetskom zasićenju pa se tu krivulje magnetiziranja i razmagnetiziranja praktički preklapaju te je razlika između njih 0 A. S obzirom na navedeno te na oblik krivulje magnetiziranja može se zaključiti da ovisnost $i_m(\theta, \psi)$ mora biti glatka krivulja s jednim maksimumom. Stoga je cilj eksperimentalno određene iznose struja kroz nadomjesni otpor gubitaka u željezu prethodno filtrirati da bi ovi iznosi čim više odgovarali točkama glatkih krivulja. To se postiže primjenom algoritma opisanog u prilogu C, a krajnji rezultat je prikazan na slici 4.14.

Slika 4.14. Ovisnost struje kroz nadomjesni otpor gubitaka u željezu o položaju i magnetskom toku

Na slici 4.15 prikazana je momentna karakteristika stroja koja je dobivena sukladno s jednadžbom (3.24), numeričkim integriranjem magnetskog toka po struji i_L i deriviranjem po položaju, iz pregledne tablice $i_L(\theta, \psi)$.

Slika 4.15. Elektromagnetski moment jedne faze u ovisnosti o kutu zakreta rotora i faznoj struji dobiven iz pregledne tablice $i_L(\theta, \psi)$

Elektromagnetski moment jedne faze zapisan je u obliku pregledne tablice $M_f(\theta, i_L)$. Kao i kod prikaza elektromagnetskog momenta pomoću druge parcijalne sume Fourierovog reda (slika 3.8), na slici 4.15 elektromagnetski moment jedne faze SRG-a pri položajima $\theta = 0^\circ$, $\theta = -30^\circ$ i $\theta = 30^\circ$ je jednak nuli. S jedne strane, SRM ima izraženu magnetsku nelinearnost, dok s druge strane, elektromagnetski moment prikazan na slici 4.15 dobiven je numeričkim integriranjem i deriviranjem podataka dobivenih iz izmjerenih vrijednosti. Ovaj postupak uzrokuje značajne greške pri procjeni elektromagnetskog momenta. Zbog tih grešaka, teško je iz podataka prikazanih na slici 4.15 jasno razlučiti što se odnosi na stvarni elektromagnetski moment SRM-a, a što na grešku u procjeni.

4.3. Određivanje međuinduktiviteta između faza prekidačkog reluktantnog stroja

Zbog međuinduktivne veze, kroz razmatranu fazu zatvara se dio magnetskog toka susjedne faze stroja. Promjena tog magnetskog toka inducira određen napon u razmatranoj fazi. Faza koja je počela voditi prije razmatrane ima značajan magnetski tok u trenutku kada počne voditi razmatrana faza. Primjerice, kada počne voditi prva faza, već vodi druga faza. Zato je potrebno uzeti u obzir utjecaj magnetskog toka druge faze koji se zatvara kroz prvu fazu. Kada vodi prva faza, počinje

voditi četvrta faza. Kako četvrta faza tek počinje voditi, magnetski tok te faze koji se zatvara kroz prvu je zanemariv.

Međuinduktivitet je procijenjen iz podataka dobivenih eksperimentom istosmjerne uzbude. Metoda je slična onoj za određivanje magnetskog toka, koja je opisana u poglavlju 3.1. Razlika je u tome što se kod određivanja međuinduktiviteta napon mjeri na otvorenim stezaljkama razmatrane faze, a struja pušta kroz susjednu fazu kada je rotor zakočen u željenom položaju.

Međuinduktivitet je procijenjen između prve i druge faze stroja, tako da je inducirani napon u_i mjeren na stezaljkama prve faze, a impuls struje i_f puštan kroz drugu fazu. Mjerenje je provedeno u rasponu od $\theta = -30^\circ$ do $\theta = 17,5^\circ$ s korakom od 2,5°. Pri položajima od 20° do 30° međuinduktivitet između prve i druge faze je zanemariv. Korak od 2,5° odabran je da bi se provelo mjerenje pri položaju $\theta = -7,5^\circ$ gdje je međuinduktivitet maksimalan. Kada je kut između statorskog pola prve faze i najbližeg rotorskog pola $\theta = -7,5^\circ$, tada je kut između statorskog pola druge faze i najbližeg rotorskog pola $\theta = 7,5^\circ$ što je prikazano na slici 4.16. Pri tom položaju rotora magnetski otpor između te dvije faze je minimalan.

Slika 4.16. Položaj rotora kod kojeg je magnetski otpor minimalan između prve i druge faze Izmjereni inducirani napon u_i i fazna struja i_f iz kojih je procijenjen međuinduktivitet za položaj $\theta = -7.5^{\circ}$ prikazani su na slici 4.17.

Slika 4.17. Fazna struja i inducirani napon kod eksperimenta istosmjerne uzbude za procjenu međuinduktiviteta pri položaju $\theta = -7.5^{\circ}$

Slika 4.18 prikazuje aproksimirani međuinduktivitet L_{mt} između razmatrane i prethodno magnetizirane faze u ovisnosti o položaju rotora.

Slika 4.18. Aproksimirani međuinduktivitet između razmatrane i prethodno magnetizirane faze u ovisnosti o položaju rotora

Na slici 4.5 prikazani su smjerovi magnetskog toka svake faze. Dio magnetskog toka druge faze koji se zatvara kroz prvu, treće kroz drugu te četvrte kroz treću su u suprotnom smjeru od magnetskog toka razmatrane faze. Tada vrijedi međuinduktivitet prikazan na slici 4.18. Dio magnetskog toka prve faze koji se zatvara kroz četvrtu fazu je u smjeru magnetskog toka četvrte faze. U tom je slučaju međuinduktivitet suprotnog predznaka od onog prikazanog na slici 4.18. Polinom prikazan na slici 4.18 je:

$$L_{mt} = \sum_{l=0}^{4} a_{mtl} \cdot \theta^l \tag{4.8}$$

Koeficijenti polinoma a_{mtl} (l = 1,...,4) u jednadžbi (4.8) dobiveni su *Matlabovim* alatom *Basic Fitting Tool* i navedeni su u prilogu B. Međutok dvaju faza dobiva se množenjem jednadžbe (4.8) s faznom strujom prethodno magnetizirane faze i_s :

$$\Psi_{mt} = i_s \cdot L_{mt} \tag{4.9}$$

Deriviranjem jednadžbe (4.9) po vremenu dobiva se sljedeća jednadžba:

$$\frac{d\Psi_{mt}}{dt} = e_{mt} = \frac{di_s}{dt} \cdot L_{mt} + i_s \cdot \frac{dL_{mt}}{d\theta} \cdot \omega$$
(4.10)

gdje je e_{mt} napon koji prethodno magnetizirana faza inducira u razmatranoj fazi. Iz jednadžbi (4.8) i (4.10) slijedi:

$$e_{mt} = \frac{di_s}{dt} \cdot \sum_{l=0}^{4} a_{mtl} \cdot \theta^l + i_s \cdot \sum_{l=1}^{4} l \cdot a_{mtl} \cdot \theta^{l-1} \cdot \frac{180^\circ}{\pi} \omega$$
(4.11)

Uzimajući u obzir smjer magnetiziranja faza stroja sa slike 4.5 vrijedi:

$$e_{mt,j} = \frac{di_s}{dt} \cdot \sum_{l=0}^{4} a_{mtl} \cdot \theta^l + i_s \cdot \sum_{l=1}^{4} l \cdot a_{mtl} \cdot \theta^{l-1} \cdot \frac{\pi}{180^\circ} \cdot \omega, j = 1, 2, 3$$

$$e_{mt,4} = -\left(\frac{di_s}{dt} \cdot \sum_{l=0}^{4} a_{mtl} \cdot \theta^l + i_s \cdot \sum_{l=1}^{4} l \cdot a_{mtl} \cdot \theta^{l-1} \cdot \frac{180^\circ}{\pi} \omega\right)$$
(4.12)

Dio magnetskog toka prve faze koji se zatvara kroz četvrtu je u suprotnom smjeru nego što je to slučaj za ostale faze, stoga vrijede jednadžbe (4.12).

4.4. Simulacija naprednog modela u Matlab/Simulinku

Kod klasičnog modela, jedna faza SRG-a nadomještena je induktivitetom i otporom namota. Pripadajuća nadomjesna shema jedne faze spojene na jednu granu asimetričnog mosnog pretvarača prikazana je na slici 3.1. Na slici 4.19 prikazana je ta nadomjesna shema nadopunjena utjecajem međuinduktiviteta, remanentnog magnetskog toka i gubitaka u željezu. Takva nadomjesna shema prikladna je za izradu naprednog modela SRG-a.

Slika 4.19. Nadomjesna shema jedne faze SRG-a koja uključuje međuinduktivitet, remanentni magnetski tok i gubitke u željezu spojena na jednu granu asimetričnog mosnog pretvarača

Na slici 4.19 i_m predstavlja struju kroz nadomjesni otpor gubitaka u željezu R_m , a i_L predstavlja struju kroz induktivitet faznog namota L. Za faznu struju i_f vrijedi jednadžba:

$$i_f = i_L + k \cdot i_m \tag{4.13}$$

Struje i_L i i_m zapisane su kao pregledne tablice $i_L(\theta, \psi)$ i $i_m(\theta, \psi)$. Prilikom magnetiziranja je k = 1 pa se fazna struja i_f sastoji od struje kroz induktivitet i_L uvećane za struju i_m koja teče kroz nadomjesni otpor gubitaka u željezu. Prilikom razmagnetiziranja je k = -1 pa se fazna struja sastoji od struje kroz induktivitet umanjene za struju koja teče kroz nadomjesni otpor gubitaka u željezu. Napon u_L inducira se zbog promjene magnetskog toka ψ po vremenu. Ovaj napon je ujedno i pad napona na

nadomjesnom otporu gubitaka u željezu. Utjecaj remanentnog magnetskog toka nadomješten je naponom e_r , a utjecaj međuinduktiviteta je nadomješten naponom e_{mt} . Za nadomjesnu shemu sa slike 4.19 vrijedi naponska jednadžba:

$$k \cdot u = R \cdot i_{f,j} + \frac{d\psi}{dt} + e_{mt,j} + e_{r,j}$$

$$(4.14)$$

gdje j predstavlja redni broj faze.

Iz jednadžbe (4.14) dobiva se izraz za magnetski tok:

$$\Psi = \int_0^t (k \cdot u - R \cdot i_{f,j} - e_{mt,j} - e_{r,j}) \cdot dt + \Psi(0)$$
(4.15)

Kako SRG ne radi u području kontinuiranog vođenja, u trenutku uklapanja tranzistora magnetski tok je 0 Wb pa je i $\psi(0) = 0$ Wb. Blokovska shema jedne faze SRG-a naprednog modela prikladnog za Matlab/Simulink prikazana je na slici 4.20.

Slika 4.20. Blokovska shema jedne faze za napredni model SRG-a

Svrha blokovske sheme prikazane na slici 4.20 je odrediti faznu struju i_f . To se postiže jednadžbom (4.13). Struje i_m i i_L određuju se iz preglednih tablica opisanih u poglavlju 4.2 na temelju položaja rotora θ i magnetskog toka ψ . Smjer struje i_m ovisi o sklopnom stanju tranzistora k razmatrane grane asimetričnog mosnog pretvarača. Prema jednadžbi (4.15), magnetski tok jedne faze ψ dobiva se integriranjem napona u_L na induktivitetu L prikazanom na slici 4.19, a to je napon

na namotu $k \cdot u$ umanjen za pad napona na omskom otporu namota $R \cdot i_f$, napon e_r induciran promjenom remanentnog magnetskog toka (jednadžba (4.5)) i napon e_{mt} koji inducira promjena magnetskog toka uslijed međuinduktivne veze (jednadžba (4.12)). U blokovskoj shemi je postavljeno ograničenje da magnetski tok ne može pasti ispod 0 Wb, a gornji iznos nije limitiran. Sklopno stanje tranzistora k određuje se iz trenutnog položaja rotora θ , položaja uklapanja θ_u i položaja isklapanja θ_i . Ako je položaj rotora između položaja uklapanja i isklapanja onda je k = 1, a inače je k = -1. Slika 4.21 prikazuje simulacijski model jedne faze naprednog modela SRG-a u Matlab/Simulinku koji se temelji na blokovskoj shemi prikazanoj na slici 4.20.

Slika 4.21. Simulacijski model jedne faze za napredni model SRG-a u Matlab/Simulinku

Na slici 4.21 žutom bojom označeni su *Rate transition* blokovi čija svrha je da razdvoje dijelove simulacije koji se izvode s fiksnim korakom uzorkovanja od onih koje se izvode s varijabilnim korakom uzorkovanja. U fiksnim diskretnim koracima frekvencije uzorkovanja 20 kHz simulira se sve što u stvarnom sustavu izvodi na računalu, a to je izračun sklopnog stanja tranzistora i uzorkovanje fazne struje. Taj dio modela označen je crvenom bojom. Ostatak modela faze se izvodi s promjenjivim korakom uzrokovanja jer se odnosi na kontinuirane komponente u stvarnom sustavu, odnosno na sam SRG i asimetrični mosni pretvarač. Jednadžba (4.12), kojom je određen napon koji se inducira zbog međuinduktiviteta, vrijedi između položaja -30° i 17,5° pa je položaj ograničen između tih vrijednosti prije ulaza u pripadajući blok. Napon induciran zbog promjene remanentnog magnetskog toka određen je jednadžbom (4.5). Jednadžbom (4.15) određen je magnetski tok. Iz preglednih tablica određene su struje i_L i i_m . Kako su magnetske karakteristike faze stroja zrcalno simetrične obzirom na os apscisa, za potrebe određivanja navedenih struja uzeta je apsolutna vrijednost položaja. Jednadžbom (4.13) određuje se fazna struja i_f koja ne može pasti ispod 0 A, a gornji iznos nije limitiran. Elektromagnetski moment jedne faze određen je iz pregledne tablice na temelju struje i_L i položaja rotora.

Blokovska shema naprednog modela SRG-a, asimetričnog mosnog pretvarača i trošila zajedno s regulacijskim sustavom napona između sabirnica je identična blokovskoj shemi prikazanoj na slici 3.11 imajući na umu da se sada u bloku *Simulacija faze j*, j = 1, 2, 3, 4 nalazi napredni model pojedine faze.

4.5. Krivulje magnetiziranja prekidačkog reluktantnog generatora

U 2. poglavlju opisana je elektromagnetska pretvorba energije SRG-a krivuljama magnetiziranja. Naprednim modelom procijenjene su krivulje magnetiziranja stroja iz priloga A za različite radne točke SRG-a. Slika 4.22 prikazuje procijenjene krivulje magnetiziranja u sve četiri faze pri položaju uklapanja -10° za radne točke definirane naponom od 200 V, brzinom vrtnje 3000 r/min i opterećenjima od 364 W i 889 W, odnosno otporom trošila od 110 Ω i 45 Ω . Krivulje se međusobno razlikuju zbog utjecaja međuinduktiviteta i remanentnog magnetskog toka. Promjena magnetskog toka uslijed međuinduktiviteta, u četvrtoj fazi inducira elektromotornu silu koja potpomaže porast fazne struje, dok u prvoj, drugoj i trećoj fazi inducira elektromotornu silu

koja mu se protivi. Za očekivati je da će u te tri faze fazna struja biti podjednaka, ali sa slike 4.22a je očito da to nije slučaj. Za razliku u tim faznim strujama odgovoran je remanentni magnetski tok. Kao što je opisano u poglavlju 4.1, inducirana elektromotorna sila nastala zbog remanentnog magnetskog toka najviše se protivi porastu struje u prvoj fazi, u drugoj fazi protivi se nešto manje, a u trećoj ga počinje podržavati. Kada se rotorski pol nađe u području četvrte faze, u njemu je remanentni magnetski tok maksimalan i u smjeru magnetskog toka, stoga on podržava porast fazne struje četvrte faze. Dakle, u četvrtoj fazi remanentni magnetski tok i međuinduktivitet podržavaju porast fazne struje pa je pri nižim opterećenjima četvrta faza više opterećena nego ostale faze. Kako je pri većim opterećenjima magnetski tok veći, tako remanentni magnetski tok i međuinduktivitet imaju manji utjecaj na faznu struju, kao što je prikazano na slici 4.22b.

Slika 4.22. Krivulje magnetiziranja za sve četiri faze pri opterećenju od a) 364 W i b) 889 W

Slika 4.23 prikazuje procijenjene krivulje magnetiziranja treće faze stroja pri položaju uklapanja od -10° i radnim točkama definiranim brzinom vrtnje od 3000 r/min, otporom trošila 65 Ω i različitim naponima. Pri većem naponu, u istom vremenskom razdoblju postiže se veći magnetski tok, stoga su i površine koje krivulje magnetiziranja zatvaraju veće.

Slika 4.23. Krivulje magnetiziranja za različite napone

Slika 4.24 prikazuje procijenjene krivulje magnetiziranja treće faze stroja pri različitim položajima uklapanja θ_u , brzini vrtnje od 3000 r/min, otporu trošila 110 Ω i naponu od 200 V. Kod položaja uklapanja –15° veća je energija magnetiziranja nego kod ostalih položaja uklapanja, a kod položaja uklapanja 0° je najmanja od svih prikazanih za približno istu generiranu energiju.

Slika 4.24. Krivulje magnetiziranja za različite položaje uklapanja tranzistora asimetričnog mosnog pretvarača

Slika 4.25 prikazuje procijenjene krivulje magnetiziranja treće faze stroja pri položaju uklapanja od -10° i radnim točkama definiranom brzinama vrtnje od 2000 r/min i 3000 r/min, otporom trošila 65 Ω i naponom od 200 V.

Slika 4.25. Krivulje magnetiziranja za različite brzine vrtnje stroja

Površine koje zatvaraju krivulje magnetiziranja prikazane na slici 4.25, obrnuto su proporcionalne brzini vrtnje, odnosno razmijenjena energija po jednom periodu vođenja je manja pri većim brzinama. Tako se postiže ista snaga pri različitim brzinama vrtnje.

5. EKSPERIMENTALNA VALIDACIJA NAPREDNOG SIMULACIJSKOG MODELA

U ovom poglavlju opisana je usporedba rezultata dobivenih simulacijskim modelima predstavljenim u 3. i 4. poglavlju s eksperimentalno dobivenim rezultatima. U poglavlju 5.1 opisana je laboratorijska maketa, a u poglavlju 5.2 opisan je eksperimentalni postupak određivanja područja rada reguliranog SRG-a. U poglavlju 5.3 predstavljena je usporedba simulacijskih rezultata s eksperimentalnim.

5.1. Laboratorijska maketa sustava s prekidačkim reluktantnim generatorom

Na slici 5.1 prikazana je blokovska shema prema kojoj je izrađena laboratorijska maketa sustava s 8/6 SRG-om koji je opterećen radnim trošilom R_t i napajan asimetričnim mosnim pretvaračem. Maketa je prikazana na slici 5.2. SRG je pogonjen istosmjernim motorom, koji je upravljan usmjerivačem tipa SINAMICS DCM, oznake 6RA813-6DV62-0AA0 (proizvođač Siemens). Parametri pogonskog istosmjernog motora navedeni su u prilogu A.

Faznim strujama SRG-a upravlja se asimetričnim mosnim pretvaračem koji je, u osnovi, građen od osam IGBT tranzistora (tip IRG4PH50UD, proizvođač International Rectifiers) i osam dioda (poredne diode tranzistora tipa IRG4PH50UD) [138]. Algoritam koji generira sklapanje ovih tranzistora opisan je u poglavlju 3.2, a implementiran je korištenjem upravljačke kartice DS1104, proizvođača dSpace. Algoritam se izvodi s frekvencijom od 20 kHz, što je ujedno približno maksimalna frekvencija izvođenja ovog algoritma. Pobudni sklopovi za tranzistore su tipa SKHI22B, proizvođača Semikron na čije se ulaze s upravljačke kartice DS1104 dovode impulsi za sklapanje tranzistora. Istom karticom se prikupljaju mjerni signali položaja rotora i brzine vrtnje rotora, napona između sabirnica, mehaničkog momenta na vratilu SRG-a i faznih struja. Položaj i brzina vrtnje rotora mjere se inkrementalnim enkoderom tipa XCC 1510PS50X, proizvođača Telemecanique, koji ima rezoluciju od 5000 impulsa po okretaju.

Mehanički moment M_m mjeri se uređajem TMB 308 (proizvođač Magtrol) koji je kruto spojen na zajedničko vratilo pogonskog istosmjernog stroja i SRG-a. Kada su se određivali parametri SRG-a, na mjestu uređaja za mjerenje momenta bila je montirana kočnica kojom je rotor mogao biti fiksiran u željeni položaj, kao što je opisano u 3. i 4. poglavlju.

Slika 5.1. Blokovska shema regulacijskog sustava s prekidačkim reluktantnim generatorom

Napon između sabirnica mjeri se naponskim senzorom tipa LV 25-P, proizvođača LEM, a svaka fazna struja se mjeri strujnim senzorom tipa LA 55-P, istog proizvođača. Za uzorkovanje mjerenih podataka koristi se upravljačka kartica DS1104, dok je snimanje podataka realizirano računalnim programom *dSpace Control Desk*. Napon za početnu uzbudu ostvaren je jednofaznim regulacijskim transformatorom i diodnim ispravljačem.

Slika 5.2. Laboratorijska maketa regulacijskog sustava s prekidačkim reluktantnim generatorom

Na slici 5.3 prikazan je izmjereni napon između sabirnica u za stacionarnu radnu točku definiranu brzinom vrtnje od 3000 r/min, naponom između sabirnica 300 V, otporom trošila 65 Ω te položajem uklapanja tranzistora –5°. U vremenskom periodu od 5 s snimljeno je 100001 uzorak napona.

Slika 5.3. Odstupanje napona između sabirnica od referentne vrijednosti

Više od 99 % uzoraka nalazi se unutar intervala 300 V \pm 0,63 V. U ostalim radnim točkama, odstupanje napona između sabirnica od referentne vrijednosti proporcionalno je samom naponu između sabirnica.

5.2. Eksperimentalno određivanje područja rada reguliranog prekidačkog reluktantnog generatora

U ovom poglavlju je prikazan postupak određivanja skupa ostvarivih radnih točaka reguliranog SRG-a. Napravljen je niz eksperimenata na opisanoj laboratorijskoj maketi u kojima su postignute radne točke s različitim položajima uklapanja, brzinom vrtnje, naponom između sabirnica i otporom trošila. U svakom eksperimentu snimljene su sve četiri fazne struje, mehanički moment, položaj rotora i kut magnetiziranja.

Kod određivanja područja rada reguliranog SRG-a polazi se od činjenica da je nazivna brzina vrtnje SRM-a 2000 r/min, a maksimalna brzina vrtnje pogonskog istosmjernog stroja pri kojoj nije potrebno slabljenje polja je 3000 r/min. Stoga su ove brzine uzete kao donja i gornja granica područja promjena brzina vrtnje vodeći računa da se jednopulsni način rada, primijenjen u ovoj disertaciji, u pravilu, koristi pri brzinama vrtnje koje su veće od nazivne brzine vrtnje SRM-a. U ovom poglavlju su prikazani eksperimentalni rezultati samo pri brzinama vrtnje od 2000 r/min i

3000 r/min jer stacionarne radne točke SRG-a dobivene između ovih graničnih brzina vrtnje nisu posebno značajne. Brzine veće od 3000 r/min su izbjegnute jer je u tom slučaju opteretivost istosmjernog stroja smanjena.

Napon između sabirnica održava se na referentnoj razini PI regulatorom, čiji je izlaz kut magnetiziranja. Fazne struje vršnih vrijednosti manjih od 1 A ne generiraju značajniju snagu. Pri struji od 1 A, u rasponu položaja rotora od 0° do 20° magnetski tok je oko 0,2 Wb. U tom se rasponu položaja rotora, u pravilu, odvija magnetiziranje faze. Da bi se u tom području, pri brzini vrtnje od 2000 r/min, postigao magnetski tok od 0,2 Wb, potreban je napon od oko 150 V. Dakle, da bi se generirala značajna energija, minimalan potreban napon iznosi 150 V. Gornju granicu napona između sabirnica U_{max} potrebno je odrediti da bi se ograničila vršna vrijednost fazne struje jer se s povećanjem napona između sabirnica povećava i vršna vrijednost fazne struje. Maksimalna vršna vrijednost struje je postavljena na 10 A. Pri tom iznosu fazne struje gubici u bakru dostižu 28 % nazivne snage stroja. Vršna vrijednost fazne struje u pravilu se postiže pri položaju 30° kada induktivitet iznosi 0,025 H. Ako kroz fazni namot teče 10 A, pri položaju 30° magnetski tok iznosi 0,25 Wb. Taj magnetski tok posljedica je napona na namotu stroja. Može se smatrati da je napon između sabirnica konstantan u jednom periodu vođenja. Ako se u jednadžbi (3.1) zanemari pad napona na otporu faznog namota dobiva se:

$$k \cdot u = \frac{d\psi(i_f, \theta)}{dt}$$
(5.1)

Iz jednadžbe (5.1) slijedi:

$$\Psi(i_f, \theta) = \int_0^T k \cdot u \cdot dt + \Psi_0$$
(5.2)

U trenutku uklapanja tranzistora $\Psi_0 = 0$ Wb. Iz jednadžbe (5.2) za faznu struju 10 A i položaj 30° dobiva se:

$$U_{max} \cdot (t_m - t_{r1}) = 0,25 \text{ Wb}$$
(5.3)

gdje je:

 U_{max} gornja granica napona između sabirnica,

t_m vrijeme magnetiziranja faze stroja,

 t_{r1} vrijeme od trenutka isklapanja tranzistora do trenutka kad rotorski pol dođe u položaj 30°.

Za potrebu procjene gornje granice napona može se smatrati da su inducirani naponi pojedine faze zbog međuinduktiviteta i remanentnog magnetskog toka zanemarivi. Stoga je za ovu procjenu

dovoljno poznavati napon između sabirnica. Kut magnetiziranja pri vršnoj vrijednosti fazne struje od 10 A iznosi oko 25°. Prema jednadžbi (5.3) napon U_{max} će biti tim veći što je razlika vremena t_m i t_{r1} manja. Ova razlika se smanjuje kako se brzina vrtnje povećava. Stoga se za određivanje gornje granice napona između sabirnica U_{max} uzima maksimalna brzina vrtnje koja je jednaka 3000 r/min. Pri brzini vrtnje 3000 r/min magnetiziranje traje oko $t_m = 1,38$ ms. Za vrijeme magnetiziranja na faznom namotu je pozitivan napon između sabirnica te magnetski tok faze raste. Kada se tranzistori isklope, na faznom namotu je negativan napon između sabirnica. Položaj isklapanja je u pravilu oko 20°. Pri brzini vrtnje 3000 r/min, kut od 20° do 30° rotor prođe u vremenu $t_{r1} = 0,55$ ms te tada magnetski tok faze pada. Uvrštavanjem vremena t_m i t_{r1} u jednadžbu (5.3) dobiva se iznos gornje granice napona između sabirnica od 301,2 V. Iz toga slijedi da bi pri brzini vrtnje od 3000 r/min i maksimalnoj vršnoj faznoj struji od 10 A maksimalni napon između sabirnica iznosio 300 V. Time je određen maksimalni napon između sabirnica. Konačno, znajući minimalni i maksimalni napon između sabirnica, za provođenje eksperimenata odabran su naponi od 150 V, 200 V, 250 V i 300 V.

Za terećenje sustava korišteni su otpornici od 45 Ω i 65 Ω te njihov serijski spoj, čime je dobiven otpor od 110 Ω . U navedenom rasponu napona od 150 V do 300 V, tim otpornicima je ostvarena snaga trošila u rasponu od 205 W do 1389 W, odnosno 18,6 % do 126,26 % nazivne snage generatora, što predstavlja širok opseg promjena opterećenja dostatan za kvalitetnu analizu rada SRG-a.

Da bi se odredio elektromagnetski moment koji stvara SRM, prethodno je izmjeren mehanički moment praznog hoda M_0 za različite brzine vrtnje. Rezultat mjerenja je prikazan je slici 5.4 crvenim točkama, s tim da se za svaku brzinu vrtnje moment mjerio 5 puta da bi se pogreška mjerenja minimizirala.

*Slika 5.4. Moment praznog hoda M*⁰

Mjereni moment praznog hoda prikazan na slici 5.4 aproksimiran je pravcem prikazanim žutom bojom jer se moment praznog hoda uobičajeno, u teoriji električnih strojeva, smatra da ovisi linearno o brzini vrtnje [139]. Međutim, zbog Stribeckovog efekta, u području manjih brzina vrtnje, ova ovisnost odstupa od pravca [140]. Uzimajući to u obzir kao i činjenicu da je za mjerenje momenta korišten mjerni uređaj čiji je nominalni moment 20 Nm, odstupanja mjernih točaka momenta od idealnih teorijskih su primjetna. Da bi se dobila ovisnost momenta praznog hoda o brzini vrtnje koja je uobičajena u analizi električnih strojeva, linearna ovisnost prikazana žutim pravcem na slici 5.4 je translatirana za iznos od 0,07665 Nm da bi se postiglo da je moment praznog hoda jednak nuli kada rotor miruje. Konačno, u daljnjoj analizi se primjenjuje linearna aproksimacija momenta praznog hoda prikazana plavom bojom na slici 5.4 čija jednadžba glasi:

$$M_0 = -6,208 \cdot 10^{-5} \cdot n \tag{5.4}$$

Za svaku radnu točku, od izmjerenog mehaničkog momenta oduzet je moment praznog hoda M_0 te tako dobiven elektromagnetski moment koji stvara SRG. Uvrštavanjem brzina vrtnje 2000 r/min i 3000 r/min u jednadžbu (5.4) dobiva se moment praznog hoda koji iznosi $M_0 = -0,1242$ Nm i $M_0 = -0,1862$ Nm, slijedom.

Do pretvorbe mehaničke energije u električnu dolazi ako je uspostavljen magnetski tok faze stroja i rotorski pol prolazi kroz područje od položaja potpunog preklapanja do potpunog nepreklapanja kao što je opisano u poglavlju 2.3. Zato je potrebno magnetski tok stvoriti prije nego

što se rotorski pol nađe u položaju potpunog preklapanja, odnosno u području motorskog načina rada. Prilikom magnetiziranja faze stroja potrebno je zadovoljiti dva suprotna uvjeta: potrebno je izgraditi dovoljno velik magnetski tok u fazi stroja prije nego što rotorski pol uđe u područje generiranja, a s druge strane, poželjno je da stroj što manje radi u motorskom području rada jer je cilj generiranje energije. Područje motorskog i generatorskog načina rada za prvu fazu stroja kada se rotor vrti u smjeru kazaljke na satu prikazano je na slici 5.5. Pri većim opterećenjima potreban je i veći magnetski tok, stoga je potrebno odabrati položaj uklapanja dalje od položaja potpunog preklapanja, a pri manjim opterećenjima potreban je manji magnetski tok, tako da položaj uklapanja može biti bliže položaju potpunog preklapanja.

Slika 5.5. Područje motorskog i generatorskog načina rada za prvu fazu stroja kada se rotor vrti u smjeru kazaljke na satu

Svaka radna točka može se ostvariti pri različitim iznosima položaja uklapanja. Eksperimenti su provedeni pri položajima uklapanja -15° , -10° i -5° .

Kombinacija brzina vrtnje 2000 r/min i 3000 r/min; napona 150 V, 200 V, 250 V i 300 V; otpora trošila od 110 Ω , 65 Ω i 45 Ω te položaja uklapanja -15° , -10° i -5° daju 72 potencijalna eksperimenta od kojih je na laboratorijskoj maketi ostvareno 58. U nastavku su opisana ograničenja laboratorijske makete te su navedeni eksperimenti koje nije bilo moguće realizirati, kao i obrazloženja za nemogućnost njihovih realizacija.

Zbog ograničenja laboratorijske makete 14 eksperimenata nije ostvareno. Nazivna snaga pogonskog istosmjernog stroja iznosi 1100 W pri brzini vrtnje od 3000 r/min. Pri otporu trošila 45 Ω i naponu između sabirnica 300 V, snaga na trošilu je 2000 W što je 181,81 % nazivne snage

pogonskog istosmjernog stroja. Takvih eksperimenata je 6. S obzirom na maksimalnu brzinu vrtnje od 3000 r/min, pogonski istosmjerni stroj se može opteretiti konstantnom snagom od 2/3 nazivne snage, odnosno 733,33 W pri brzini od 2000 r/min bez slabljenja polja. Za otpor trošila od 65 Ω, napon između sabirnica od 300 V i brzinu vrtnje od 2000 r/min, snaga na trošilu iznosi 1384,61 W, što je 188,81 % prethodno spomenute snage od 733,33 W. Takva su 3 eksperimenta. Za otpor trošila od 45 Ω, napon između sabirnica od 250 V i brzinu vrtnje od 2000 r/min, snaga na trošilu iznosi 1388,88 W, što je 189,39 % prethodno spomenute snage od 733,33 W. Ovakvih eksperimenata ima također 3. Kod brzine vrtnje od 3000 r/min, otpora trošila od 45 Ω i napona između sabirnica od 200 V i 250 V (2 eksperimenta), nije bilo moguće postići stabilnu radnu točku kod položaja uklapanja od -5° jer se ne stigne razviti dovoljno velik magnetski tok. Za istu brzinu vrtnje od 3000 r/min, otpor trošila od 45 Ω i napon između sabirnica od 150 V, postignuta je stabilna radna točka kod položaja uklapanja od -7° , budući da se pri planiranom položaju uklapanja od -5° nije mogao razviti dovoljno velik magnetski tok.

5.3. Usporedba simulacijskih rezultata s eksperimentalnim

Nakon što su provedeni eksperimenti, napravljene su simulacije pojedinih radnih točaka iz prethodnog poglavlja uz korištenje klasičnog i naprednog modela, opisanih u 3. i 4. poglavlju. Dobivene su simulirane fazne struje i ulazne snage koje služe za usporedbu s izmjerenim pripadajućim veličinama. Usporedba je moguća jedino ako su simulacije naprednim i klasičnim modelom provedene pod istim uvjetima kao i eksperimenti. To znači da napon između sabirnica, brzina vrtnje, položaji uklapanja i isklapanja te položaj rotora u svakom trenutku simulacije i mjerenja moraju biti identični. Blokovska shema prikazana slikom 3.10 prilagođena je tim zahtjevima kao što je prikazano slikom 5.6.

Slika 5.6. Model SRG-a koji je opterećen radnim trošilom R₁ pri čemu je SRG napajan asimetričnim mosnim pretvaračem, prilagođen za usporedbu s eksperimentima

Magnetski tok osim o faznoj struji, ovisi o položaju rotora pa je važno da u simulacijama on bude identičan kao u provedenim eksperimentima. U simulacijama se položaj rotora može dobiti integriranjem kutne brzine vrtnje po vremenu. Kako je proračunom u simulaciji, ipak nemoguće dobiti identičan položaj rotora u modelima kao na laboratorijskoj maketi, u simulacijama je preuzet eksperimentalno snimljen položaj rotora. Položaj uklapanja ima konstantnu vrijednost za vrijeme svakog eksperimenta i simulacije. U simulacijama je, također, preuzet eksperimentalno dobiven kut magnetiziranja. Preuzimanjem ovih dvaju eksperimentalno dobivenih veličina osigurano je jednako vrijeme magnetiziranja u simulacijskim modelima i u eksperimentima. Za vrijeme provedbe eksperimenata, napon između sabirnica održavan je konstantnim primjenom PI regulatora, čiji je izlaz kut magnetiziranja. Valovanje napona prikazano slikom 5.3 ne može značajno utjecati na simulacijske rezultate pa je napon između sabirnica u simulacijama postavljen kao konstantan. Brzina vrtnje je također postavljena kao konstantna jer se u eksperimentima Za svaku radnu točku i svaki položaj uklapanja ostvaren eksperimentom provedena je simulacija klasičnim i naprednim modelom. U svakom eksperimentu opisanom u prethodnom poglavlju snimljene su sve četiri fazne struje, mehanički moment, položaj rotora i kut magnetiziranja.

Slika 5.7 prikazuje usporedbu faznih struja dobivenih eksperimentalno s faznim strujama dobivenim naprednim i klasičnim modelom. Najprije se definira koeficijent točnosti *K* kao pokazatelj točnosti naprednog simulacijskog modela. Ovaj koeficijent je definiran sljedećom jednadžbom:

$$K(R_t, \theta_u, n, u) = \frac{\sum_{q=1}^{q=95000} |i_{f, eksp}(q) - i_{f, simk}(q)|}{\sum_{q=1}^{q=95000} |i_{f, eksp}(q) - i_{f, simn}(q)|}$$
(5.5)

gdje je:

 $i_{f,eksp}(q)$ iznos mjerene fazne struje u q-tom koraku uzorkovanja,

- *i_{f,simk}(q)* iznos fazne struje dobivene klasičnim simulacijskim modelom u *q*-tom koraku uzorkovanja,
- *i_{f,simn}*(*q*) iznos fazne struje dobivene naprednim simulacijskim modelom u *q*-tom koraku uzorkovanja.

Koeficijent *K* ovisi o parametru R_t te o varijablama θ_u , *n* i *u*. To je zato što upravo ova četiri podatka određuju bilo koju radnu točku SRG-a. U jednadžbi (5.5) uspoređuju se struje dobivene simulacijama i eksperimentalno za 95000 mjernih točaka koje odgovaraju vremenskom intervalu od 4,5 s postignutih u stacionarnom stanju. Na slici 5.7 su ilustrirani uzorci eksperimentalno dobivene fazne struje, fazne struje dobivene naprednim modelom te fazne struje dobivene klasičnim modelom, u stacionarnom stanju SRG-a. Na istoj slici su prikazani i članovi sume brojnika i nazivnika jednadžbe (5.5). Prema ovoj jednadžbi slijedi da ako je *K*>1 onda je napredni model točniji od klasičnog, a ako je *K*<1 onda je obrnuto.

Slika 5.7. Usporedba eksperimentalno dobivene fazne struje sa simulacijski dobivenim faznim strujama

U tablici 5.1 prikazane su radne točke i položaji uklapanja koje su eksperimentalno realizirane. Naveden je apsolutni i relativni iznos snage za svaku radnu točku. Relativni iznos snage je dobiven kao omjer apsolutnog iznosa snage i nazivne snage SRG-a.

Tablica 5.1. Otpor trošila, položaj uklapanja,	brzina vrtnje,	napon	između	sabirnica	te i	zlazna
snaga generatora zabilježeni a	u realiziranim	eksper	imentim	a		

Redni br.	$R_{t}\left(\Omega ight)$	θ_u (°)	<i>n</i> (r/min)	<i>u</i> (V)	<i>P</i> (W)	$\frac{P}{-100}$ (%)
mj. točke						P_n
1	110	-15	2000	150	204,55	18,60
2	110	-15	2000	200	363,64	33,06
3	110	-15	2000	250	568,18	51,65
4	110	-15	2000	300	818,18	74,38
5	110	-15	3000	150	204,55	18,60
6	110	-15	3000	200	363,64	33,06
7	110	-15	3000	250	568,18	51,65
8	110	-15	3000	300	818,18	74,38
9	110	-10	2000	150	204,55	18,60
10	110	-10	2000	200	363,64	33,06
11	110	-10	2000	250	568,18	51,65
12	110	-10	2000	300	818,18	74,38
13	110	-10	3000	150	204,55	18,60

14	110	-10	3000	200	363,64	33,06
15	110	-10	3000	250	568,18	51,65
16	110	-10	3000	300	818,18	74,38
17	110	-5	2000	150	204,55	18,60
18	110	-5	2000	200	363,64	33,06
19	110	-5	2000	250	568,18	51,65
20	110	-5	2000	300	818,18	74,38
21	110	-5	3000	150	204,55	18,60
22	110	-5	3000	200	363,64	33,06
23	110	-5	3000	250	568,18	51,65
24	110	-5	3000	300	818,18	74,38
25	65	-15	2000	150	346,15	31,47
26	65	-15	2000	200	615,38	55,94
27	65	-15	2000	250	961,54	87,41
28	65	-15	3000	150	346,15	31,47
29	65	-15	3000	200	615,38	55,94
30	65	-15	3000	250	961,54	87,41
31	65	-15	3000	300	1384,62	125,87
32	65	-10	2000	150	346,15	31,47
33	65	-10	2000	200	615,38	55,94
34	65	-10	2000	250	961,54	87,41
35	65	-10	3000	150	346,15	31,47
36	65	-10	3000	200	615,38	55,94
37	65	-10	3000	250	961,54	87,41
38	65	-10	3000	300	1384,62	125,87
39	65	-5	2000	150	346,15	31,47
40	65	-5	2000	200	615,38	55,94
41	65	-5	2000	250	961,54	87,41
42	65	-5	3000	150	346,15	31,47
43	65	-5	3000	200	615,38	55,94
44	65	-5	3000	250	961,54	87,41
45	65	-5	3000	300	1384,62	125,87
46	45	-15	2000	150	500,00	45,45
47	45	-15	2000	200	888,89	80,81
48	45	-15	3000	150	500,00	45,45
49	45	-15	3000	200	888,89	80,81
50	45	-15	3000	250	1388,89	126,26
51	45	-10	2000	150	500,00	45,45
52	45	-10	2000	200	888,89	80,81
53	45	-10	3000	150	500,00	45,45
54	45	-10	3000	200	888,89	80,81

55	45	-10	3000	250	1388,89	126,26
56	45	-5	2000	150	500,00	45,45
57	45	-5	2000	200	888,89	80,81
58	45	_7	3000	150	500,00	45,45

U tablici 5.2 prikazani su koeficijenti točnosti K definirani jednadžbom (5.5) za svaku postignutu točku iz tablice 5.1 i za svaku pojedinu fazu SRG-a.

r	I		I	1
Redni br. mj.	F_1	F_2	F_3	F_4
točke				
l	1,78	1,54	1,15	1,46
2	1,98	1,53	1,18	1,50
3	1,93	1,49	1,31	1,57
4	1,72	1,38	1,47	1,61
5	1,70	1,32	1,28	1,70
6	1,73	1,37	1,27	1,66
7	1,68	1,41	1,28	1,65
8	1,67	1,46	1,35	1,66
9	1,68	1,26	1,07	1,70
10	1,71	1,18	1,01	1,79
11	1,62	1,15	1,01	1,96
12	1,44	1,07	1,04	2,13
13	1,52	1,21	1,28	1,95
14	1,63	1,27	1,25	1,92
15	1,57	1,27	1,22	1,93
16	1,49	1,26	1,21	1,97
17	1,11	1,08	0,94	1,97
18	1,24	1,00	0,84	2,08
19	1,16	0,96	0,75	2,33
20	1,03	0,86	0,69	2,60
21	1,09	1,10	1,32	2,22
22	1,22	1,16	1,26	2,18
23	1,23	1,15	1,15	2,27
24	1,21	1,12	1,09	2,26
25	1,94	1,80	1,20	1,41
26	1,84	1,75	1,27	1,51
27	1,63	1,61	1,44	1,59
28	1,68	1,73	1,31	1,61

Tablica 5.2. Koeficijenti točnosti K za pojedine faze SRG-a i za radne točke prikazane u Tablici 5.1

29	1,66	1,85	1,26	1,57
30	1,66	1,84	1,30	1,57
31	1,59	1,77	1,35	1,54
32	1,91	1,43	1,47	1,67
33	1,75	1,39	1,44	1,81
34	1,61	1,33	1,42	1,99
35	1,79	1,44	1,76	1,94
36	1,76	1,56	1,65	1,96
37	1,69	1,56	1,67	1,88
38	1,55	1,54	1,67	1,94
39	1,32	1,28	1,51	1,89
40	1,40	1,23	1,36	2,02
41	1,33	1,21	1,25	2,04
42	1,74	1,58	1,85	2,14
43	1,77	1,72	1,69	2,10
44	1,67	1,67	1,72	2,18
45	1,59	1,63	1,65	2,07
46	1,74	1,78	1,02	1,38
47	1,57	1,66	1,05	1,43
48	1,56	1,58	1,07	1,57
49	1,55	1,48	1,02	1,47
50	1,51	1,43	1,01	1,44
51	1,81	1,79	1,48	1,79
52	1,58	1,65	1,45	1,89
53	1,72	1,80	1,34	1,93
54	1,61	1,59	1,20	1,80
55	1,52	1,53	1,18	1,64
56	1,79	1,90	1,52	1,95
57	1,65	1,68	1,45	1,97
58	1,27	1,15	1,04	1,44

Iz tablice 5.2 se vidi da je napredni model točniji od klasičnog u gotovo svim radnim točkama SRG-a. Ipak, koeficijenti točnost *K* za pojedine faze SRG-a i radne točke prikazane u tablici 5.1 iznosi manje od 1 te su ovi iznosi označeni crvenom bojom. U drugoj i trećoj fazi mogu se stvoriti takvi uvjeti da se remanentni magnetski tok i dio magnetskog toka susjedne faze koji se zatvara kroz razmatranu fazu međusobno ponište, što se u spomenutim fazama SRG-a i radnim točkama ipak ne događa kod naprednog modela. U tom slučaju klasični model postaje točniji od naprednog što upućuje da bi diskretne promjene remanentnog magnetskog toka trebalo modelirati preciznije.

Međutim, s obzirom da je klasični model točniji od naprednog u zanemarivom broju slučaja to ipak nije rađeno.

Sklopni gubici procijenjeni su iz parametara navedenim u tehničkim podacima IGBT tranzistora (tip IRG4PH50UD) [141] i prema uputama u radu [142]. Gubici vođenja IGBT tranzistora i dioda, procijenjeni su iz tehničkih podataka IGBT tranzistora i prema uputama u radu [143]. Za diode su iskorištene poredne diode navedenih tranzistora pa se i njihovi parametri nalaze u istim tehničkim podacima. U prilogu D opisano je određivanje gubitaka asimetričnog mosnog pretvarača. U tablici D.1 navedeni su ukupni gubici asimetričnog mosnog pretvarača i SRG-a te samog pretvarača. U zadnjem stupcu te tablice istaknut je udio gubitaka pretvarača u ukupnim gubicima. Gubici pretvarača su u rasponu od 7,91 % do 21,62 % ukupnih gubitaka, a srednja vrijednost iznosi 12,4 %. Budući da su gubici SRG-a dominantni u ovom je radu, cilj minimizirati upravo te gubitke.

U svakom eksperimentu mehanička ulazna snaga SRG-a je određena kao umnožak elektromagnetskog momenta M i kutne brzine vrtnje ω . Navedeni moment dobiven je oduzimanjem momenta praznog hoda M_0 od izmjerenog mehaničkog moment M_m . Kod simulacijskih modela, ulazna snaga se može dobiti na dva načina. Prvi je kao umnožak izračunatog momenta i brzine vrtnje, a drugi kao zbroj izlazne snage i gubitaka SRG-a. Kod klasičnog modela, moment je procijenjen iz prikaza magnetskih karakteristika drugom parcijalnom sumom Fourierovog reda. Taj prikaz dobiven je iz samo tri eksperimenta istosmjerne uzbude opisana u poglavlju 3.1. Kod naprednog modela moment je procijenjen prema jednadžbi (3.25) numeričkim integriranjem po magnetskom toku i numeričkim deriviranjem po položaju pregledne tablice $i_L(\theta, \psi)$, što je uzrokovalo značajnu numeričku grešku. Zato je ulazna snaga u ovoj disertaciji računata kao zbroj izlazne snage i gubitaka SRG-a. Izlazna snaga određena je kao omjer kvadrata napona između sabirnica i otpora trošila. U tablici 5.3 prikazana je ulazna snaga dobivena eksperimentalno te naprednim i klasičnim simulacijskim modelom za svaki ostvareni eksperiment. Kod klasičnog modela uzimaju se u obzir samo gubici u namotima, dok se u naprednom modelu uzimaju i gubici u namotima i gubici u željezu stroja.
Redni	Izlazna	EKSPERIMENT	NAPREDNI MODEL		KLASIČNI MODEL	
br. mj.	snaga	Izmjerena ulazna	gubici	Simulirana	gubici	Simulirana
točko		snaga	SRG-a	izlazna snaga	SRG-a	izlazna snaga
IUCKC	(**)	(W)	(W)	+	(W)	+
				gubici SRG-a		gubici SRG-a
				(W)		(W)
1	204,55	308,39	44,17	248,71	11,41	215,96
2	363,64	509,34	73,87	437,50	20,82	384,46
3	568,18	746,38	108,01	676,19	33,07	601,25
4	818,18	1045,81	144,37	962,55	52,42	870,60
5	204,55	272,39	31,87	236,42	6,91	211,46
6	363,64	458,76	54,21	417,84	12,45	376,09
7	568,18	698,16	80,60	648,78	20,18	588,36
8	818,18	964,35	111,40	929,58	29,23	847,41
9	204,55	300,13	36,56	241,11	10,50	215,05
10	363,64	493,68	61,36	425,00	19,14	382,78
11	568,18	730,00	90,32	658,50	30,22	598,40
12	818,18	1007,20	122,21	940,39	45,74	863,92
13	204,55	276,34	26,80	231,34	6,95	211,50
14	363,64	449,14	46,21	409,84	12,95	376,59
15	568,18	688,60	69,40	637,58	20,01	588,19
16	818,18	958,70	95,80	913,98	29,53	847,71
17	204,55	294,83	30,62	235,17	10,42	214,97
18	363,64	473,80	51,76	415,39	19,05	382,69
19	568,18	704,94	77,47	645,65	30,30	598,48
20	818,18	978,97	106,06	924,24	47,25	865,43
21	204,55	271,83	22,70	227,24	7,19	211,74
22	363,64	438,12	39,74	403,38	13,64	377,28
23	568,18	673,99	60,43	628,61	21,43	589,61
24	818,18	945,22	83,29	901,47	31,63	849,81
25	346,15	461,48	61,80	407,95	24,17	370,32
26	615,38	767,01	103,36	718,75	43,74	659,12
27	961,54	1167,87	152,03	1113,57	81,19	1042,73
28	346,15	412,41	46,71	392,86	16,37	362,52
29	615,38	721,68	79,70	695,08	29,96	645,34
30	961,54	1141,71	118,13	1079,67	48,61	1010,15
31	1384,62	1572,81	161,08	1545,70	71,25	1455,87

Tablica 5.3. Usporedba ulaznih snaga

32	346,15	436,26	53,71	399,86	22,27	368,42
33	615,38	736,71	90,81	706,20	41,77	657,15
34	961,54	1100,28	135,21	1096,75	71,24	1032,78
35	346,15	404,37	41,59	387,75	16,22	362,37
36	615,38	705,61	72,02	687,41	30,10	645,48
37	961,54	1150,44	105,86	1067,40	49,35	1010,89
38	1384,62	1564,25	146,20	1530,82	70,43	1455,05
39	346,15	440,28	48,87	395,02	23,90	370,05
40	615,38	717,23	84,76	700,14	44,68	660,06
41	961,54	1086,67	128,89	1090,43	82,44	1043,98
42	346,15	406,42	40,99	387,15	19,21	365,36
43	615,38	689,06	72,21	687,59	35,66	651,04
44	961,54	1140,25	107,03	1068,57	57,27	1018,81
45	1384,62	1573,02	153,09	1537,71	92,18	1476,80
46	500,00	658,35	90,73	590,73	46,77	546,77
47	888,89	1106,53	153,08	1041,96	94,28	983,17
48	500,00	624,16	73,36	573,36	34,77	534,77
49	888,89	1049,81	127,25	1016,14	64,20	953,09
50	1388,89	1574,53	186,50	1575,39	105,18	1494,07
51	500,00	630,49	81,50	581,50	44,53	544,53
52	888,89	1061,03	139,24	1028,13	87,33	976,22
53	500,00	605,29	72,16	572,16	37,24	537,24
54	888,89	1038,68	126,49	1015,38	69,62	958,51
55	1388,89	1587,95	187,56	1576,44	118,51	1507,40
56	500,00	627,99	84,82	584,82	50,97	550,97
57	888,89	1051,95	152,56	1041,45	106,97	995,86
58	500,00	607,29	97,14	597,14	53,06	553,06

Relativna razlika g_P između ulazne snage dobivene eksperimentalno i simulacijskim modelima definirana je jednadžbom:

$$g_P = \frac{\left|P_{u,eksp} - P_{u,sim}\right|}{P_{u,eksp}} \cdot 100 \%$$
(5.6)

gdje je:

g_P relativna razlika između ulazne snage dobivene eksperimentalno i simulacijskim modelima,

 $P_{u,eksp}$ eksperimentalno dobivena ulazna snaga,

 $P_{u,sim}$ ulazna snaga dobivena simulacijskim modelom.

Na slici 5.8 prikazana je relativna razlika g_P između ulazne snage dobivene eksperimentalno i simulacijskim modelima za svaku radnu točku iz tablice 5.3. Crvenim stupcima prikazana je relativna razlika između ulaznih snaga dobivenih eksperimentalno i klasičnim modelom, a plavim stupcima relativna razlika između ulaznih snaga dobivenih eksperimentalno i naprednim modelom.

Slika 5.8. Relativna razlika između ulazne snage dobivene eksperimentalno i simulacijskim modelima

Srednja relativna razlika između ulaznih snaga dobivenih eksperimentalno i naprednim modelom iz tablice 5.3 iznosi 6,95 %, a srednja relativna razlika između ulaznih snaga dobivenih eksperimentalno i klasičnim modelom iznosi 13,54 %. Na slici 5.8 ističu se mjerne točke 1, 2, 5, 9, 10, 13, 17 i 21 za koje vrijedi da je relativna razlika naprednog modela veća od 13 %. U tim mjernim točkama izlazna snaga SRG-a iznosi najviše 35 % nazivne snage stroja. S povećanjem izlazne snage SRG-a povećava se i točnost naprednog modela tako da on ima najveću točnost oko nazivnog i preko nazivnog opterećenja stroja. Nadalje, eksperimentalno dobivena ulazna snaga mora biti veća od ulazne snage dobivene i klasičnim i naprednim modelom. U području izlaznih snaga od 74,38 % do 126,26 % nazivne snage SRG-a dvije su mjerne točke u kojima je ulazna snaga dobivena naprednim modelom neznatno veća od ulazne snage dobivene eksperimentalno. Te mjerne točke su u tablici 5.3 označene crvenom bojom. Iz navedenog se može zaključiti da:

1) Napredni model uvijek bolje opisuje stvarni SRG od klasičnog modela.

- 2) U području izlaznih snaga SRG-a manjih od 33,06 % nazivne snage SRG-a, relativna razlika između ulaznih snaga dobivenih eksperimentalno i naprednim modelom iznosi od 4,11 % do 20,24 %.
- 3) U području izlaznih snaga između 45,45 % i 55,94 % nazivne snage SRG-a, relativna razlika između ulaznih snaga dobivenih eksperimentalno i naprednim modelom iznosi od 0,21 % do 10,27 %.
- 4) U području izlaznih snaga između 74,38 % i 126,26 % nazivne snage SRG-a, relativna razlika između ulaznih snaga dobivenih eksperimentalno i naprednim modelom iznosi od približno 0,05 % do 7,96 %.

Spomenute razlike nastaju zato što u simulacijskom modelu sustava s SRG-om nisu uračunati poluvodički gubici te zbog činjenice da napredni model SRG-a ne uračunava dodatne gubitke (engl. *stray losses*) SRG-a. Pokazano je da ovi gubici u eksperimentima iznose najviše 21,62 % ukupnih gubitaka SRG-a. S obzirom na to da, prema literaturi [144], dodatni gubici iznose oko 6 % ukupnih gubitaka SRG-a, niti ovi gubici nisu uračunati. Uzeto je u obzir da je njihova identifikacija i modeliranje složeno, naročito u nedostatku propisane procedure ili standarda. Dakle, može se zaključiti da gubici u namotima i željezu stroja dominiraju te je, u nastavku istraživanja, cilj minimizirati sumu ovih gubitaka, koji su u sljedećem poglavlju nazvani gubici SRG-a.

Da bi se u regulacijskom sustavu minimizirali gubici SRG-a, potrebno je uspostaviti odnos između varijabli SRG-a (srednje vrijednosti faktora uzbude svih faza, srednje i efektivne vrijednosti svih faznih struja) i njegovih gubitaka. Predloženi napredni model će se primijeniti za uspostavljanje ovog odnosa u sljedećem poglavlju.

6. ALGORITAM POMAKA I PROMATRANJA ZA TRAŽENJE MAKSIMALNE KORISNOSTI SUSTAVA S PREKIDAČKIM RELUKTANTNIM GENERATOROM

6.1. Korelacija varijabli stroja i gubitaka sustava s prekidačkim reluktantnim generatorom

U jednopulsnom načinu rada SRG-a potrebno je odabrati položaje uklapanja i isklapanja tranzistora asimetričnog mosnog pretvarača. Više različitih kombinacija ovih položaja uklapanja i isklapanja mogu dati željenu vrijednost regulirane varijable, što otvara mogućnost odabira optimalne kombinacije. U ovoj disertaciji napon između sabirnica *u* reguliran je promjenom položaja isklapanja θ_i kao što je opisano u poglavlju 2.4. Na temelju razlike referentnog napona U_{ref} i napona *u*, PI regulator određuje iznos kuta magnetiziranja θ_{mag} . Zbroj θ_u i θ_{mag} daje položaj isklapanja θ_i . U svakoj radnoj točki, referentni napon može se postići s različitim položajima uklapanja. Cilj je odabrati položaj uklapanja kod kojeg su gubici stroja minimalni. Budući da ih je teško precizno odrediti tijekom rada, korisno je identificirati varijablu stroja koja je s njima u najboljoj korelaciji. U nastavku je opisan odabir unaprijed definiranih varijabli SRG-a (u nastavku: varijable kandidati), koje se lako mogu odrediti tijekom rada stroja, te određivanje njihove korelacije s gubicima stroja. Promjenom položaja uklapanja dok stroj radi u stacionarnom stanju moguće je minimizirati iznos varijable kandidata koja je u najboljoj korelaciji s gubicima SRG-a.

U radovima [8, 64, 90, 122] definiran je faktor uzbude (engl. *excitation penalty*) kao odnos srednje vrijednosti fazne struje koja teče od trenutka uklapanja tranzistora do trenutka isklapanja i srednje vrijednosti fazne struje koja teče od trenutka isklapanja tranzistora do trenutka kada fazna struja padne na nulu (slika 6.1).

Slika 6.1. Ilustracija faktora uzbude na valnom obliku fazne struje SRM-a

Sukladno navedenoj definiciji, faktor uzbude jednak je:

$$\varepsilon = \frac{\frac{1}{\theta_0 - \theta_u} \cdot \int_{\theta_u}^{\theta_i} i_{f'} d\theta}{\frac{1}{\theta_0 - \theta_u} \cdot \int_{\theta_i}^{\theta_0} i_{f'} d\theta}$$
(6.1)

gdje je θ_0 položaj rotora pri kojem fazna struja pada na nulu. Na slici 6.1 zelena površina proporcionalna je energiji potrebnoj za magnetiziranje faze stroja. Ljubičasta površina proporcionalna je zbroju energija magnetiziranja i generirane energije.

Kod minimizacije valovitosti momenta [91] ili struje sabirnice [12, 119] kao i minimizacije maksimalnog magnetskog toka [122] uzimaju se trenutne vrijednosti mjerenih varijabli. Kao što je opće poznato, mjerene varijable sadrže mjerni šum. Takav mjerni šum se nepovoljno odražava na određivanja položaja uklapanja i isklapanja. Faktor uzbude [8, 64, 90, 122], efektivna [68, 74, 94, 121] i srednja vrijednost fazne struje su, zbog procesa integracije, malo osjetljivi na mjerni šum te njihova primjena na izračun položaja uklapanja i isklapanja i isklapanja sobzirom na mjerni šum u faznim strujama. Maksimalna izlazna snaga i maksimalna korisnost nisu univerzalno primjenjivi jer takvi algoritmi vrijede samo za sustav za koji su razvijeni.

U ovoj disertaciji se najprije uspostavlja korelacija između varijabli kandidata i gubitaka SRGa. Kao varijable kandidati razmatrane su srednje vrijednosti faktora uzbude svih faza ε_u te srednja I_{sr} i efektivna vrijednost I_{ef} svih faznih struja. Da bi se odredila korelacija između odabranih varijabli kandidata i gubitaka u stroju, proveden je niz eksperimenata na laboratorijskoj maketi. Za iste radne točke kao u 5. poglavlju mijenjan je položaj uklapanja od -15° do najviše 5° s korakom od 2°. Ove radne točke prikazane su u tablici E.1 u prilogu E. Za 20 radnih točaka postignuto je ukupno 166 mjernih točaka. Kao što je prikazano u toj tablici, svaka radna točka ima granični položaj uklapanja $\theta_{u,g}$ pri kojem je moguće postići stacionarno stanje. Dodavanjem 2° na taj položaj uklapanja dolazi do razmagnetiziranja SRG-a jer nije moguće stvoriti dovoljno velik magnetski tok. Primjerice, u 1. radnoj točki postignuto je stacionarno stanje u 11 mjernih točaka, što odgovara rasponu od -15° do najviše 5° s korakom od 2° pa je granični položaj uklapanja 5°. U 10. radnoj točki postignuto je stacionarno stanje u 9 mjernih točaka, a granični položaj uklapanja je 1°. Kod 20. radne točke postignuta su samo 4 stacionarna stanja tako da je granični položaj uklapanja za tu radnu točku –9°. U svakom eksperimentu snimljene su trenutne vrijednosti faznih struja i momenta. Na temelju njih određeni su iznosi varijabli kandidata i ulazna snaga SRG-a i asimetričnog mosnog pretvarača. Izlazna snaga je određena iz napona između sabirnica pretvarača i otpora trošila.

Razlika između izlazne i ulazne snage su gubici SRG-a P_g . Na slici 6.2a i 6.2b prikazan je primjer varijabli kandidata i gubitaka stroja u ovisnosti o položaju uklapanja za radne točke 2 i 20 iz tablice E.1. Slične slike se mogu dobiti sa svim ostalim radnim točkama. Izlazna snaga kod radne točke 2 je 364 W, a radne točke 20 je 1389 W te one predstavljaju granice širokog područja promjena snaga.

Slika 6.2. Gubici SRG-a i varijable kandidati u ovisnosti u položaju uklapanja za radne točke a) $n = 2000 \ r/min$, $u = 200 \ V \ i \ R_t = 110 \ \Omega \ i \ b)$ $n = 3000 \ r/min$, $u = 250 \ V \ i \ R_t = 45 \ \Omega$

Prema slici 6.2a se vidi da su minimalni gubici postignuti kod položaja uklapanja od 5° te da je upravo kod tog položaja uklapanja i faktor uzbude minimalan. Na slici 6.2b se vidi da su minimalni

gubici postignuti kod položaja uklapanja od približno –11,8°. Minimum srednje vrijednosti faznih struja iznosi 1,2 A, a minimum faktora uzbude 0,28 te su oba ova minimuma bliska položaju uklapanja od –11,8° koji daje minimalne gubitke SRG-a. Nadalje, u radnoj točki 18 iz tablice E.1 položaji uklapanja kod kojih su ostvareni minimumi efektivne vrijednosti faznih struja i gubitaka stroja su bliže od ostale dvije varijable kandidata. Dakle, ovisno o radnoj točki, minimum gubitaka SRG-a se postiže blizu minimuma različitih varijabli kandidata. Da bi se utvrdilo koja od analiziranih varijabli najbolje korelira s minimumom gubitaka SRG-a korišten je koeficijent korelacije koji glasi [145]:

$$r(gubici, V) = \frac{\sum_{q_r=1}^{q_r=166} \left((V(q_r) - \overline{V}) \cdot (P_g(q_r) - \overline{P_g}) \right)}{\sqrt{\sum_{q_r=1}^{q_r=166} (V(q_r) - \overline{V})^2 \cdot \sum_{q_r=1}^{q_r=166} (P_g(q_r) - \overline{P_g})^2}}$$
(6.2)

gdje je:

r koeficijent korelacije,

V varijabla kandidat,

 q_r broj mjerene točke,

 P_g gubici SRG-a.

U tablici E.1 nalaze se podaci dobiveni iz 166 mjernih točaka kao što je prethodno opisano. Ti su podaci uvršteni u jednadžbu (6.2) te je tako određen koeficijent korelacije r između svake od varijabli kandidata i ukupnih gubitaka stroja. Za faktor uzbude r = -0,07, za srednju vrijednosti svih faznih struja r = 0,9, a za efektivnu vrijednost svih faznih struja r = 0,84. Za iste radne točke i položaje uklapanja provedene su simulacije naprednim modelom te su određeni koeficijenti korelacije. Za faktor uzbude je r = -0,2, za srednju vrijednost svih faznih struja r = 0,98, a za efektivnu vrijednost svih faznih struja r = 0,98, a za efektivnu vrijednost svih faznih struja r = 0,98, a za efektivnu vrijednost svih faznih struja r = 0,98, a za efektivnu vrijednost svih faznih struja r = 0,97. Dakle, na temelju eksperimenata kao i na temelju naprednog simulacijskog modela, može se zaključiti da upravo minimalna srednja vrijednost svih faznih struja daje minimalne gubitke stroja, kako u simulacijama tako i u eksperimentima. Minimalni gubici SRG-a će osigurati maksimalnu korisnost sustava s SRG-om budući da su, kako je objašnjeno u 5. poglavlju, poluvodički gubici zanemareni.

Na temelju provedene analize, srednja vrijednost svih faznih struja odabrana je kao varijabla koja se minimizira u algoritmu pomaka i promatranja, koji je opisan u sljedećem poglavlju.

6.2. Algoritam za traženje maksimalne korisnosti sustava s prekidačkim reluktantnim generatorom

Algoritam za traženje maksimalne korisnosti sustava s prekidačkim reluktantnim generatorom sličan je metodi pomaka i promatranja koja se koristi za traženje radne točke u kojoj sustav daje maksimalnu snagu. Ovaj algoritam se primjenjuje u sustavima kao što su vjetrogeneratori [146, 147], gorivne ćelije [148, 149], fotonaponski sustavi [150, 151] itd. Cilj algoritma je pronaći položaj uklapanja pri kojem je srednja vrijednost svih faznih struja I_{sr} minimalna za zadanu radnu točku. Sljedećom jednadžbom određuje se srednja vrijednost svih faznih struja u trenutku $q_{sr} \cdot T_s$.

$$I_{sr}(q_{sr}) = \frac{1}{1000} \cdot \sum_{q=4000 \cdot (q_{sr}-1)+3001}^{q=4000 \cdot (q_{sr})} \frac{1}{4} \cdot \left(i_{f1}(q)+i_{f2}(q)+i_{f3}(q)+i_{f4}(q)\right)$$
(6.3)

U jednadžbi (6.3) q_{sr} predstavlja redni broj iteracije usrednjavanja faznih struja, a q korak uzorkovanja fazne struje. PI regulator kojim se određuje kut magnetiziranja radi s periodom od 50 µs, kao i uzorkovanje mjerenih varijabli, a algoritam za traženje maksimalne korisnosti radi s periodom od $T_s = 0.2$ s i njime se određuje položaj uklapanja. Dakle, za svakih 4000 promjena varijable q, varijabla q_{sr} se poveća za 1, što odgovara vremenu 0.2 s. Nakon svake promjene položaja uklapanja dolazi do prijelazne pojave. Srednja vrijednost svih faznih struja izračunava se u intervalu između 0.15 s i 0.2 s svakog perioda kada je sustav ušao u stacionarno stanje. U tom intervalu, prema jednadžbi (6.3), varijabla q će se promijeniti za 1000. Na temelju promjene srednje vrijednosti svih faznih struja $\Delta I_{sr}(q_{sr}) = I_{sr}(q_{sr}) - I_{sr}(q_{sr}-1)$ i prethodnog smjera u kojem se mijenjao položaj uklapanja *sign*($\Delta \theta_u(q_{sr}-1)$), gdje je $\Delta \theta_u(q_{sr}-1) = \theta_u(q_{sr}-1)$, određuje se iznos i smjer promijene položaja uklapanja u idućem koraku, $\Delta \theta_u(q_{sr}) = \theta_u(q_{sr}+1) - \theta_u(q_{sr})$. Na slici 6.3 prikazan je princip rada algoritma.

Slika 6.3. Princip rada algoritma za traženje maksimalne korisnosti sustava s prekidačkim reluktantnim generatorom

Prema slici 6.3, ako se promjenom položaja uklapanja od $\theta_u(q_{sr}-1)$ do $\theta_u(q_{sr})$ srednja vrijednost svih faznih struja smanjila, položaj uklapanja se mijenja u dobrom smjeru te ga takvog treba zadržati i u idućem koraku, gdje iznosi $\theta_u(q_{sr}+1)$. S druge strane, ako se promjenom položaja uklapanja srednja vrijednost svih faznih struja povećala u odnosu na prethodni korak, položaj uklapanja u idućem koraku se treba promijeniti u suprotnom smjeru. Na slici 6.4 prikazan je dijagram toka koji to opisuje.

Slika 6.4. Dijagram toka algoritma za traženje maksimalne korisnosti sustava s prekidačkim reluktantnim generatorom

Na početku izvršavanja algoritma učitavaju se početne vrijednosti varijabli. Redni broj uzorkovane fazne struje q je predstavljen brojačem čija jedna diskretna promjena predstavlja protok vremena od 50 µs. Nakon što se brojač q poveća za 1, algoritam očitava trenutne vrijednosti referentnog napona i napona između sabirnica te faznih struja. Zatim se odvijaju dva paralelna 95 procesa. U lijevom procesu sa slike 6.4, za svakih 4000 promjena brojača q, univerzalni brojač q_{sr} se poveća za 1, što znači da jedna diskretna promjena brojača q_{sr} odgovara protoku vremena od 0,2 s. Kada se q_{sr} poveća za 1, izračunava se srednja vrijednost svih faznih struja u zadnjih 0,05 s vremenskog intervala od 0,2 s, prema jednadžbi (6.3). Nakon toga izračunava se $\Delta I_{sr}(q_{sr})$. Sljedećom jednadžbom izračunava se promjena položaja uklapanja:

$$\Delta \theta_u(q_{sr}) = -k_p \cdot \Delta I_{sr}(q_{sr}) \cdot \operatorname{sign}(\Delta \theta_u(q_{sr}-1))$$
(6.4)

Jednadžbom (6.4) osigurano je da je promjena položaja uklapanja proporcionalna promjeni srednje vrijednosti svih faznih struja te da se položaj uklapanja mijenja kao što je to opisano slikom 6.3. U jednadžbi (6.4) koeficijent proporcionalnosti između promjene srednje vrijednosti svih faznih struja i promjene položaja uklapanja je odabran iznosa $k_p = 100$ da bi te promjene bile međusobno usporedive. U algoritmu je također osigurano da $\Delta \theta_u(q_{sr})$ bude unutar granica između -0,5° i 0,5° da bi se izbjegla nestabilnost sustava.

U desnom procesu sa slike 6.4 određuje se razlika referentnog napona i napona između sabirnica. Ako je ta razlika manja od 2 V, $\Delta \theta_u(q)$ ima iznos $\Delta \theta_u(q_{sr})$ koji je određen u lijevom procesu sa slike 6.4. Kada je razlika referentnog napona i napona između sabirnica veća od 2 V, znači da SRG nije postigao stacionarno stanje te se položaj uklapanja zadržava na –15°. Kada je položaj uklapanja –15° moguće je postići sve radne točke iz prethodnog poglavlja.

Slika 6.5 prikazuje simulacijski model algoritma za traženje maksimalne korisnosti sustava s prekidačkim reluktantnim generatorom u Matlab/Simulinku, koji se temelji na dijagramu toka sa slike 6.4 te na jednadžbama (6.3) i (6.4).

Slika 6.5. Simulacijski model algoritma za traženje maksimalne korisnosti sustava s prekidačkim reluktantnim generatorom

Jednadžbom (6.3) određuje se srednja vrijednost svih faznih struja. Algoritam radi s periodom uzorkovanja $T_s = 0,2$ s, odnosno s frekvencijom 2 Hz. To se postiže *Rate transition* blokom. Nakon što se odredi ΔI_{sr} , jednadžba (6.4) daje promjenu položaja uklapanja $\Delta \theta_u$, koja je zatim ograničena između vrijednosti od $-0,5^{\circ}$ do $0,5^{\circ}$. Ta promjena uklapanja dodaje se na položaj uklapanja određen u prethodnom koraku. Izlaz iz algoritma potrebno je prebaciti u područje od 20 kHz na kojem radi ostatak programa, što se postiže još jednim *Rate transition* blokom. Ako nije zadovoljen uvjet $|u-U_{ref}|<2$ V, odnosno ako sustav nije u stacionarnom stanju, onda se položaj uklapanja zadržava na -15° .

Period uzorkovanja rada algoritma od $T_s = 0.2$ s, interval između 0,15 s i 0,2 s u kojem se računa srednja vrijednost svih faznih struja navedenog perioda, koeficijent proporcionalnosti između promjene srednje vrijednosti svih faznih struja i promjene položaja uklapanja iznosa $k_p = 100$ te ograničenje promjene položaja uklapanja $\Delta \theta_u$ između vrijednosti od -0.5° do 0.5° dobiveni su metodom pokušaja i pogreške uz korištenje naprednog simulacijskog modela. Period uzorkovanja rada algoritma duži od 0,2 s uzrokuje sporiji rad algoritma. Kraći period uzorkovanja znači da će sljedeća iteracija algoritma započeti prije nego što je završila prijelazna promjena nastala zbog promjene položaja uklapanja tranzistora u prethodnoj iteraciji, što može rezultirati krivim odabirom θ_u . Kao što je već spomenuto, interval između 0,15 s i 0,2 s svakog perioda odabran je jer se tada sustav nalazi u stacionarnom stanju. Na slici 6.6 prikazana je promjena položaja uklapanja tranzistora za različite koeficijente proporcionalnosti k_p pri radnoj točki n = 3000 r/min, u = 200 V i $R_t = 65 \Omega$. Ta točka je odabrana kao primjer jer je tu izlazna snaga na trošilu 56 % nazivne snage stroja.

Slika 6.6. θ_u određen algoritmom pomaka i promatranja za različite k_p - simulacija naprednim modelom

Na slici 6.6 vidi se da značajno manji k_p od 100 (npr. 10) uzrokuje spor odziv te postoji opasnost da će se algoritam naći u lokalnom minimumu pa zato neće pronaći optimalni θ_u . Koeficijent proporcionalnosti veći od $k_p = 100$ znači da će limiti $\Delta \theta_u$ od -0.5° do 0.5° biti češće aktivirani. Ipak, i u tom slučaju će algoritam raditi sa zadovoljavajućom točnošću. Upravo zbog navedenih razloga odabrano je da k_p iznosi 100. Nadalje, promjenom θ_u za više od 0.5° postoji opasnost da će biti odabran položaj uklapanja pri kojem će se stroj razmagnetizirati. Također, pri većoj promjeni položaja uklapanja prijelazna pojava dulje traje čime se narušavaju dinamički pokazatelji kvalitete sustava.

Nakon što su određeni parametri algoritma, proveden je niz simulacija naprednim i klasičnim modelom za radne točke iz prethodnog poglavlja u kojima je određen položaj uklapanja pri kojem su ostvarene minimalne srednje vrijednosti svih faznih struja. Nakon toga je proveden niz eksperimenata u kojima je primijenjen algoritam kao i u simulacijama. Kako je svaki eksperiment trajao 60 s, mjerenja nisu provedena za radne točke kod kojih je snaga veća od 1100 W pri 3000 r/min i 734 W pri 2000 r/min jer je postojala mogućnost da sustav uđe u područje gdje može doći do preopterećenja pogonskog istosmjernog stroja. U tablici 6.1 prikazani su položaji uklapanja tranzistora ($\theta_{u,eksp}$, $\theta_{u,simn}$ i $\theta_{u,simk}$) pri kojima su ostvarene minimalne srednje vrijednosti svih faznih struja za navedene radne točke za eksperimente te za simulacije naprednim i klasičnim modelima uz primjenu algoritma pomaka i promatranja. U svakom eksperimentu polazi se od stacionarnog stanja pri položaju uklapanja tranzistora -15° , nakon čega se aktivira algoritam pomaka i promatranja. Kada tako određen položaj uklapanja stacionira, pristupa se spremanju uzoraka položaja uklapanja s frekvencijom uzorkovanja od 20 kHz u trajanju od 60 s. U tablici 6.1 prikazana je srednja vrijednost položaja uklapanja u tom periodu. Također je prikazana razlika između položaja uklapanja dobivenih eksperimentalno i simulacijskim modelima. Srednja vrijednost apsolutne razlike položaja uklapanja dobivenih eksperimentalno i naprednim modelom iznosi 1,72°, a eksperimenta i klasičnog modela iznosi 6,34° što potvrđuje točnost i opravdanost naprednog modela SRG-a. U zadnjem stupcu nalazi se granični položaj uklapanja $\theta_{u,g}$ koji je dobiven eksperimentalno, kao što je opisano u prethodnom podpoglavlju. Položaji uklapanja koje je pronašao algoritam pomaka i promatranja u eksperimentima $\theta_{u,eksp}$ dovoljno su udaljeni od graničnih položaja uklapanja tranzistora $\theta_{u,g}$ pa ne postoji opasnost da će algoritam odabrati položaj uklapanja kod kojeg će se stroj razmagnetizirati.

Radna	n	u	R_t	P	$\theta_{u,eksp}$	$\theta_{u,simn}$	$\theta_{u,simk}$	$\theta_{u,eksp}$ (°)	$\theta_{u,eskp}$ (°)	$\theta_{u,g}$
točka	(r/min)	(V)	(Ω)	(W)	(°)	(°)	(°)	$-\theta_{u,simn}$	$-\theta_{u,simk}$	(°)
								(°)	(°)	
1	2000	150	110	205	2,65	1,22	-13,73	1,43	16,38	5
2	2000	200	110	364	1,73	2,78	-12,16	-1,05	13,89	5
3	2000	250	110	568	0,61	-0,81	-13,86	1,42	14,47	5
4	2000	300	110	818	-0,03	0,35	-11,64	-0,38	11,16	5
5	3000	150	110	205	-0,62	0,05	-4,84	-0,67	4,22	3
6	3000	200	110	364	-1,5	0,42	-8,6	-1,92	7,1	3
7	3000	250	110	568	-2,07	-0,1	-4,41	-1,97	2,34	3
8	3000	300	110	818	-2,72	0,07	-4,63	-2,79	1,91	3
9	2000	150	65	346	-3,16	-1,9	-15,27	-1,26	12,11	1
10	2000	200	65	615	-3,68	-2,81	-15,55	-0,87	1,87	1
11	3000	150	65	346	-6,52	-5,15	-10,37	-1,37	3,85	-3
12	3000	200	65	615	-7,5	-4,53	-13,03	-2,97	5,53	-3
13	3000	250	65	962	-7,2	-5,8	-6,62	-1,4	-0,58	-3
14	3000	300	65	1385	-7,74	-5,6	-9,58	-2,14	1,84	-3
15	2000	150	45	500	-7,27	-5,52	-16,82	-1,75	9,55	-3
16	3000	150	45	500	-11,52	-8,38	-12,41	-3,14	0,89	-7
17	3000	200	45	889	-12,18	-9,38	-12,31	-2,8	0,13	-9

Tablica 6.1. Položaj uklapanja dobiveni algoritmom pomaka i promatranja – eksperimenti i simulacije

Slike 6.7 – 6.10 prikazuju položaj uklapanja koji daje algoritam pomaka i promatranja u dinamici sustava SRG-a tijekom prelaska iz jedne radne točke prikazane u tablici 6.1 u drugu radnu točku iste ove tablice. Na slikama 6.7 – 6.10 s t_p označen je trenutak početka prijelazne pojave. Taj trenutak zadan je ručno u svakom eksperimentu pa je svaki put različit. Plavom linijom označena je eksperimentalno dobivena srednja vrijednost položaja uklapanja u prikazanom intervalu. Crvenom linijom označen je eksperimentalno određen položaj uklapanja iz tablice 6.1 koji je dobiven, kako je već navedeno, polazeći od stacionarnog stanja pri položaju uklapanja tranzistora –15°. Na slici 6.7 u trenutku $t_p = 18,6$ s dolazi do skokovite promjene otpora trošila sa 110 Ω na 65 Ω , odnosno prelaska iz radne točke 6 na radnu točku 12 iz tablice 6.1. Ta promjena uzrokuje razliku napona između sabirnica i referentnog napona veću od 2 V pa algoritam definira položaj ukapanja tranzistora u tom trenutku iznosa –15°, kao što je to opisano dijagramom toka na slici 6.4. Između 18,6 s i 26,9 s algoritam pokušava tri puta izračunati iznos kuta uklapanja različit od –15° ali ne uspijeva jer je uvijek $|u-U_{ref}|>2$ V. Tek nakon 26,9 s je $|u-U_{ref}|<2$ V te algoritam izračunava novi položaj uklapanja čija je srednja vrijednost u novouspostavljenom stacionarnom stanju jednaka –7,14°.

Slika 6.7. Promjena θ_u u dinamici tijekom prelaska iz radne točke 6 na radnu točku 12

Na slici 6.8 dolazi do promjene brzine vrtnje po rampi s 2000 r/min na 3000 r/min pri naponu 150 V i otporu trošila 45 Ω u trenutku $t_p = 15,24$ s (prelazak iz radne točke 15 na radnu točku 16 u tablici 6.1). Ta promjena brzine vrtnje traje 2,5 s, što je definirano u postavkama usmjerivača SINAMICS DCM, pa ne uzrokuje razliku napona između sabirnica i referentnog napona veću od 2 V. Stoga se za vrijeme ove prijelazne pojave položaj uklapanja ne postavlja na iznos –15°.

Slika 6.8. Promjena θ_u u dinamici tijekom prelaska iz radne točke 15 na radnu točku 16

Na slici 6.9 dolazi do promjene brzine vrtnje s 3000 r/min na 2000 r/min pri naponu 150 V i otporu trošila 65 Ω u trenutku $t_p = 24,4$ s (prelazak iz radne točke 11 na radnu točku 9 u tablici 6.1). I u ovom slučaju promjena brzine vrtnje traje 2,5 s pa ne dolazi do razlike napona između sabirnica i referentnog napona većeg od 2 V.

Slika 6.9. Promjena θ_u u dinamici tijekom prelaska iz radne točke 11 na radnu točku 9

Na slici 6.10 dolazi do postupne promjene referentnog napona s 300 V na 150 V pri brzini vrtnje 3000 r/min i otporu trošila 65 Ω u trenutku $t_p = 18,6$ s (prelazak iz radne točke 14 na radnu točku 11 u tablici 6.1). Kondenzatoru između sabirnica treba vremena da se napuni ili isprazni pa je brzina promjene referentnog napona ograničena na 15 V/s jer u suprotnom integracijska greška PI regulatora postaje velika i uzrokuje značajan propad ili nadvišenje napona između sabirnica pretvarača. Zato i u ovom slučaju ne dolazi do razlike napona između sabirnica i referentnog napona većeg od 2 V.

Slika 6.10. Promjena θ_u u dinamici tijekom prelaska iz radne točke 14 na radnu točku 11

Iz podataka u tablici 6.1 i sa slika 6.7 - 6.10 može se zaključiti da algoritam pomaka i promatranja radi konzistentno, odnosno ne zapinje u lokalnim minimumima i pronalazi približno jednak stacionarni iznos položaja uklapanja tranzistora u određenoj radnoj točki bez obzira na način dolaska u tu radnu točku. Razlika u stacionarnom iznosu položaja uklapanja tranzistora za pojedinu radnu točku, čiji je položaj uklapanja prikazan na slikama 6.7 - 6.10, može se promatrati kao razlika između crvene i plave linije na tim slikama. Ova razlika je manja od 1° i nastaje zbog mjernog šuma za vrijeme mjerenja faznih struja i napona istosmjerne sabirnice.

7. ZAKLJUČAK

U ovoj doktorskoj disertaciji analiziran je rad prekidačkog reluktantnog stroja s naglaskom na jednopulsni generatorski način rada. Rad stroja ostvaren je asimetričnim mosnim pretvaračem. U disertaciji je opisan razvoj naprednog modela SRG-a s uračunatim međuinduktivnim vezama između susjednih faza, remanentnim magnetskim tokom i gubicima u željezu. Takav model omogućio je analizu gubitka stroja te razvoj sustava regulacije napona između sabirnica asimetričnog mosnog pretvarača pri maksimalnoj korisnosti SRG-a.

U prvoj fazi istraživanja izrađen je klasični model SRG-a, gdje je fazni namot stroja predstavljen serijskim spojem omskog otpora i induktiviteta, a magnetski tok aproksimiran Fourierovim redom. Izveden je model jedne faze SRG-a pomoću naponske jednadžbe te sustav jednadžbi za klasični model SRG-a, asimetrični mosni pretvarač i trošilo s regulacijskim sustavom napona. Model uzima u obzir gubitke u namotima, ali zanemaruje gubitke u željezu, zbog čega nije prikladan za analizu gubitaka stroja.

U drugoj fazi istraživanja izrađen je napredni model SRG-a koji uračunava magnetski tok, međuinduktivitet, gubitke u željezu i remanentni magnetski tok. Gubici u željezu nadomješteni su otporom spojenim paralelno induktivitetu faznog namota. Remanentni magnetski tok, koji ovisi o položaju rotora, mijenja se pod utjecajem magnetskog toka faza te je aproksimiran linearnim jednadžbama za svaku fazu. Međuinduktivitet je aproksimiran polinomom četvrtog stupnja. Nakon toga, nadomjesna shema jedne faze SRG-a koja je kod klasičnog modela predstavljena otporom namota i induktivitetom, nadopunjena je nadomjesnim otporom gubitaka u željezu i induciranim elektromotornim silama koje su posljedica remanentnoga magnetskog toka i međuinduktiviteta. Pomoću te nadomjesne sheme postavljena je naponska jednadžba iz koje je određen model jedne faze SRG-a. Isti sustav jednadžbi koje vrijedi za nadomjesnu shemu asimetričnog mosnog pretvarača kod klasičnog modela vrijedi i za napredni model. Iz tog sustava jednadžbi i navedenog modela jedne faze stroja, dobiven je napredni model SRG-a, asimetričnog mosnog pretvarača i trošila zajedno s regulacijskim sustavom napona između sabirnica.

U sljedećoj fazi istraživanja izrađena je laboratorijska maketa asimetričnog mosnog pretvarača. Provedeno je 58 eksperimenata s različitim radnim točkama, koristeći otpornike od 45 Ω , 65 Ω i njihov serijski spoj (110 Ω). U rasponu napona od 150 V do 300 V, postignuta je snaga od 205 W do 1389 W (18,6 % do 126,26 % nazivne snage generatora). Snimljeni su podaci o faznim strujama, mehaničkom momentu, položaju rotora i kutu magnetiziranja. Simulacije su izvedene klasičnim i naprednim modelom. Definiran je koeficijent točnosti *K*, koji je za 225 od 232 slučaja pokazao da je napredni model točniji. Ulazna snaga određena je eksperimentalno kao i simulacijama naprednim i klasičnim modelima. Srednja relativna razlika između ulaznih snaga dobivenih eksperimentalno i naprednim modelom iznosi 6,95 %, a s klasičnim modelom 13,54 %. Napredni model je uvijek točniji, posebno pri višim izlaznim snagama. U simulacijama nisu uračunati poluvodički gubici i dodatni gubici SRG-a, procijenjeni na 21,62 % i 6 % ukupnih gubitaka. Cilj daljnjeg istraživanja je minimizacija gubitaka u namotima i željezu stroja.

U pretposljednjoj fazi istraživanja uspostavljena je korelacija između unaprijed definiranih varijabli SRG-a (varijabli kandidata) i minimalnih gubitaka stroja. Razmatrane su srednje vrijednosti faktora uzbude svih faza te srednja i efektivna vrijednost svih faznih struja. Koeficijent korelacije r između svake varijable i ukupnih gubitaka stroja određen je eksperimentalno i naprednim simulacijskim modelom. Za srednju vrijednost svih faznih struja r je 0,9 eksperimentalno i 0,98 prema naprednom modelu. Ostale varijable imale su r u rasponu od -0,2 do 0,97. Zaključeno je da minimalna srednja vrijednost svih faznih struja osigurava minimalne gubitke stroja. Minimalni gubici SRG-a maksimiziraju korisnost sustava, uz zanemarivanje poluvodičkih i dodatnih gubitaka. Stoga je srednja vrijednost svih faznih struja odabrana kao varijabla za minimizaciju u algoritmu pomaka i promatranja.

U posljednjoj fazi istraživanja razvijen je algoritam pomaka i promatranja koji za zadanu radnu točku promjenom položaja uklapanja traži minimalnu srednju vrijednost svih faznih struja. Parametri ovog algoritma određeni su metodom pokušaja i pogreške naprednim simulacijskim modelom. Nakon toga proveden je niz simulacija naprednim i klasičnim modelom za različite radne točke u kojima je određen položaji uklapanja tranzistora pri kojem su ostvarene minimalne srednje vrijednosti svih faznih struja. Zatim je proveden niz eksperimenata u kojima je primijenjen algoritam identičan kao i u simulacijama. Srednja vrijednost apsolutne razlike položaja uklapanja dobivenih eksperimentalno i naprednim modelom iznosi 1,72°, a eksperimenta i klasičnog modela iznosi 6,34°. Ako bi se u eksperimentima primijenili optimalni položaji uklapanja dobiveni naprednim simulacijskim modelom, postigla bi se veća korisnost stroja nego kad bi se isto napravilo klasičnim simulacijskim modelom. Na kraju su napravljeni eksperimenti u kojima su snimljeni položaji uklapanja koji daje algoritam pomaka i promatranja u dinamici sustava SRG-a tijekom prelaska iz jedne radne točke u drugu. Pokazano je algoritam pomaka i promatranja radi

konzistentno, odnosno ne zapinje u lokalnim minimumima i pronalazi sličnu vrijednost položaja uklapanja tranzistora za istu radnu točku bez obzira na koji način se dolazi u razmatranu radnu točku.

Na temelju rezultata prikazanih u doktorskom radu može se zaključiti da su ostvareni sljedeći znanstveni doprinosi:

- Novi model prekidačkog reluktantnog generatora utemeljen na naponskoj jednadžbi i integralu faznog napona s uključenim međuinduktivitetom susjednih faza prekidačkog reluktantnog generatora, remanentnim magnetskim tokom i nadomjesnim otporom gubitaka u željezu.
- Novi algoritam pomaka i promatranja (engl. *perturb and observe*) za kontinuirano traženje optimalnog trenutka uklapanja tranzistora u ovisnosti o položaju rotora s ciljem minimiziranja gubitaka u faznim namotima i željezu. Za minimiziranje spomenutih gubitaka primijenjen je iznos srednje vrijednosti svih faznih struja koji je u dobroj korelaciji sa sumom gubitaka u faznim namotima i željezu te promjena položaja uklapanja tijekom perioda izvođenja algoritma.

Analizu koja je provedena u disertaciji, a koja se temeljila na novom naprednom modelu SRGa koji sadrži međuinduktivitet, gubitke u željezu i remanentni magnetski tok, moguće je proširiti i na motorske načine rada SRM-a. Razvijeni model otvara i mogućnost boljeg razumijevanja rada SRG-a kada bi se fazna struja oblikovala histerezno ili pulsno-širinski. U nastavku istraživanja bi se mogli minimizirati ne samo gubici SRG-a u analiziranom sustavu nego suma ukupnih gubitaka SRG-a i asimetričnog mosnog pretvarača uračunavanjem i tih gubitaka.

LITERATURA

- [1] T. J. E. Miller, *Electronic Control of Switched Reluctance Machine, Newnes Power Engineering Series.* Oxford, GB, 2001.
- [2] P. Asadi, M. Ehsani, and B. Fahimi, "Design and control characterization of switched reluctance generator for maximum output power", in *Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, 2006. APEC '06.*, 19-23 March 2006 2006, pp. 1639-1644, doi: 10.1109/APEC.2006.1620761.
- [3] A. E. Santo, M. R. Calado, and C. Cabrita, "Static Simulation of a Linear Switched Reluctance Actuator with the Flux Tube Method", *Advances in Electrical and Computer Engineering*, vol. 10, no. 2, pp. 35-42, 2010.
- [4] J. G. Amoros and G. P. Andrada, "Magnetic circuit analysis of a linear switched reluctance motor", in 2009 13th European Conference on Power Electronics and Applications, 8-10 Sept. 2009 2009, pp. 1-9.
- [5] J. Corda and S. M. Jamil, "Inclusion of eddy-currents impact in the model of a switched reluctance machine based on the equivalent electric circuit", 2013., vol. 1: Electrical Engineering Electronic Journal.
- [6] J. Corda and S. M. Jamil, "Experimental Determination of Equivalent-Circuit Parameters of a Tubular Switched Reluctance Machine With Solid-Steel Magnetic Core", *IEEE Transactions on Industrial Electronics*, vol. 57, no. 1, pp. 304-310, 2010, doi: 10.1109/TIE.2009.2026762.
- [7] A. Mosallanejad and A. Shoulaie, "Investigation and Calculation of Magnetic Field in Tubular Linear Reluctance Motor Using FEM", *Advances in Electrical and Computer Engineering*, vol. 10, no. 4, pp. 43-48, 2010, doi: 10.4316/AECE.2010.04007.
- [8] G. Brady, C. O'Loughlin, J. Massey, D. Griffiths, and C. Villegas, "Design and test of a linear switched reluctance generator for use in wave-energy applications", *4th International Conference on Ocean Energy, ICOE,* 2012.
- [9] J. F. Pan, Q. Li, X. Wu, N. Cheung, and L. Qiu, "Complementary power generation of double linear switched reluctance generators for wave power exploitation", *International Journal of Electrical Power & Energy Systems*, vol. 106, pp. 33-44, 2019/03/01/ 2019, doi: <u>https://doi.org/10.1016/j.ijepes.2018.09.023</u>.
- [10] R. P. G. Mendes, M. R. A. Calado, and S. J. P. S. Mariano, "Particle swarm and Box's complex optimization methods to design linear tubular switched reluctance generators for wave energy conversion", *Swarm and Evolutionary Computation*, vol. 28, pp. 29-41, 2016/06/01/ 2016, doi: <u>https://doi.org/10.1016/j.swevo.2015.12.003</u>.
- [11] Y. Zhu, H. Wu, and C. Zhen, "Regenerative braking control under sliding braking condition of electric vehicles with switched reluctance motor drive system", *Energy*, vol. 230, p. 120901, 2021/09/01/2021, doi: <u>https://doi.org/10.1016/j.energy.2021.120901</u>.
- [12] Y. Zhu, H. Wu, and J. Zhang, "Regenerative Braking Control Strategy for Electric Vehicles Based on Optimization of Switched Reluctance Generator Drive System", *IEEE Access*, vol. 8, pp. 76671-76682, 2020, doi: 10.1109/ACCESS.2020.2990349.
- [13] M. Hamouda, A. A. Menaem, H. Rezk, M. N. Ibrahim, and L. Számel, "An improved indirect instantaneous torque control strategy of switched reluctance motor drives for light electric vehicles", *Energy Reports*, vol. 6, pp. 709-715, 2020/12/01/ 2020, doi: <u>https://doi.org/10.1016/j.egyr.2020.11.142</u>.

- [14] S. Kocan and P. Rafajdus, "Dynamic model of High Speed Switched Reluctance Motor for automotive applications", *Transportation Research Procedia*, vol. 40, pp. 302-309, 2019/01/01/ 2019, doi: https://doi.org/10.1016/j.trpro.2019.07.045.
- [15] M. Ma, R. Wang, F. Li, J. Wang, and S. Yang, "A fault-tolerant control strategy for switched reluctance motor drive for electric vehicles under short-fault condition", *Microelectronics Reliability*, vol. 88-90, pp. 1221-1225, 2018/09/01/ 2018, doi: <u>https://doi.org/10.1016/j.microrel.2018.07.033</u>.
- [16] J. D. Widmer, R. Martin, and M. Kimiabeigi, "Electric vehicle traction motors without rare earth magnets", *Sustainable Materials and Technologies*, vol. 3, pp. 7-13, 2015/04/01/ 2015, doi: <u>https://doi.org/10.1016/j.susmat.2015.02.001</u>.
- [17] E. Öksüztepe, "In-Wheel Switched Reluctance Motor Design for Electric Vehicles by Using a Pareto-Based Multiobjective Differential Evolution Algorithm", *IEEE Transactions on Vehicular Technology*, vol. 66, no. 6, pp. 4706-4715, 2017, doi: 10.1109/TVT.2016.2618119.
- [18] A. Rezig, W. Boudendouna, A. Djerdir, and A. N'Diaye, "Investigation of optimal control for vibration and noise reduction in-wheel switched reluctance motor used in electric vehicle", *Mathematics and Computers in Simulation*, vol. 167, pp. 267-280, 2020/01/01/ 2020, doi: <u>https://doi.org/10.1016/j.matcom.2019.05.016</u>.
- [19] Y. Wang, P. Li, and G. Ren, "Electric vehicles with in-wheel switched reluctance motors: Coupling effects between road excitation and the unbalanced radial force", *Journal of Sound and Vibration*, vol. 372, pp. 69-81, 2016/06/23/ 2016, doi: https://doi.org/10.1016/j.jsv.2016.02.040.
- [20] Y. Qin, C. He, X. Shao, H. Du, C. Xiang, and M. Dong, "Vibration mitigation for in-wheel switched reluctance motor driven electric vehicle with dynamic vibration absorbing structures", *Journal of Sound and Vibration*, vol. 419, pp. 249-267, 2018/04/14/ 2018, doi: <u>https://doi.org/10.1016/j.jsv.2018.01.010</u>.
- [21] Switched reluctance motors power electric Land Rovers: https://drivesncontrols.com/switched-reluctance-motors-power-electric-land-rovers/ 22.8.2024.
- [22] NIDEC SR Drives: <u>https://acim.nidec.com/motors/products-services/switched-reluctance-motors</u>, 18.6.2024.
- [23] T. J. E. Miller, "Optimal design of switched reluctance motors", *IEEE Transactions on Industrial Electronics*, vol. 49, no. 1, pp. 15-27, 2002, doi: 10.1109/41.982244.
- [24] Are switched-reluctance motors for you?, <u>https://www.machinedesign.com/motorsdrives/are-switched-reluctance-motors-you</u>, 12.3.2019.
- [25] Rocky Mountains, <u>http://www.rockymountaintechnologies.com/SR_Motors.html</u>, 12.3.2019.
- [26] Software motor company, <u>https://softwaremotor.com/technology/</u>, 12.3.2019.
- [27] Maccon, <u>https://www.maccon.de/en/stepper-reluctance-motors/reluctance-motors.html</u>, 12.3.2019.
- [28] Kaskod, <u>http://kaskod.ee</u>, 12.3.2019.
- [29] Orange1, <u>https://www.orange1.eu/en/prodotti/synchronous-reluctance-motor-sr-series/</u>, 12.3.2019.
- [30] E. Darie, C. Cepisca, and E. Darie, "*The use of Switched Reluctance Generator in Wind Energy Applications*", 2009.

- [31] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher, and P. Wheeler, "Control of a switched reluctance generator for variable-speed wind energy applications", *IEEE Transactions on Energy Conversion*, vol. 20, no. 4, pp. 781-791, 2005, doi: 10.1109/TEC.2005.853733.
- [32] R. Cardenas, R. Pena, M. Perez, G. Asher, J. Clare, and P. Wheeler, "Control system for grid generation of a switched reluctance generator driven by a variable speed wind turbine", in 30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004, 2-6 Nov. 2004 2004, vol. 2, pp. 1879-1884 Vol. 2, doi: 10.1109/IECON.2004.1431870.
- [33] P. Lobato, A. Cruz, J. Silva, and A. J. Pires, "The Switched Reluctance Generator for Wind Power Conversion", in *Proceedings da Conferência 9CHLIE - 9th Spanish Portuguese Congress on Electrical Engineering*, Marbella, Spain, 2005.
- H. Chen and Z. Shao, "Turn-on angle control for switched reluctance wind power generator [34] system", in 30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004 2004, vol. 2367-2370 2004. 2-6 Nov. 3, pp. Vol. 3. doi: 10.1109/IECON.2004.1432170.
- [35] H. Chen, T. Su, F. Xiao, and Y. Zhu, "A switched reluctance wind power generator with the excitation of low voltage", in *IEEE International Conference on Systems, Man and Cybernetics*, 6-9 Oct. 2002 2002, vol. 6, p. 5 pp. vol.6, doi: 10.1109/ICSMC.2002.1175619.
- [36] K. Park and Z. Chen, "Self-tuning fuzzy logic control of a switched reluctance generator for wind energy applications", in 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 25-28 June 2012 2012, pp. 357-363, doi: 10.1109/PEDG.2012.6254026.
- [37] D. McSwiggan, L. Xu, and T. Littler, "Modelling and control of a variable-speed switched reluctance generator based wind turbine", in 2007 42nd International Universities Power Engineering Conference, 4-6 Sept. 2007 2007, pp. 459-463, doi: 10.1109/UPEC.2007.4468990.
- [38] M. A. Mueller, "Design and performance of a 20 kW, 100 rpm, switched reluctance generator for a direct drive wind energy converter", in *IEEE International Conference on Electric Machines and Drives*, 2005., 15-15 May 2005 2005, pp. 56-63, doi: 10.1109/IEMDC.2005.195701.
- [39] E. Echenique, J. Dixon, R. Cardenas, and R. Pena, "Sensorless Control for a Switched Reluctance Wind Generator, Based on Current Slopes and Neural Networks", *IEEE Transactions on Industrial Electronics*, vol. 56, no. 3, pp. 817-825, 2009, doi: 10.1109/TIE.2008.2005940.
- [40] D. Xin et al., "Design of switched reluctance generator system for wind power maximization", in 2015 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW), 2-4 Feb. 2015 2015, pp. 306-310, doi: 10.1109/EIConRusNW.2015.7102286.
- [41] K. Park, *Power Electronic Systems for Switched Reluctance Generator based Wind Farms and DC Networks*, doktorska disertacija, Department of Energy Technology, Aalborg University, 2014.
- [42] R. Jayapragash and C. Chellamuthu, "Analysis of switched reluctance machine using FEA for renewable energy system", in *2013 International Conference on Power, Energy and Control (ICPEC)*, 6-8 Feb. 2013 2013, pp. 777-781, doi: 10.1109/ICPEC.2013.6527760.
- [43] L. Xiong, B. Xu, H. Gao, and L. Xu, "A novel algorithm of switched reluctance generator for maximum power point tracking in wind turbine application", presented at the 2009

International Conference on Sustainable Power Generation and Supply, Nanjing, Kina, 2009.

- [44] Z. Omaç and C. Cevahir, "Control of switched reluctance generator in wind power system application for variable speeds", *Ain Shams Engineering Journal*, vol. 12, no. 3, pp. 2665-2672, 2021/09/01/ 2021, doi: https://doi.org/10.1016/j.asej.2021.01.009.
- [45] C. Cossar, L. Kelly, T. J. E. Miller, C. Whitley, C. Maxwell, and D. Moorhouse, "The design of a switched reluctance drive for aircraft flight control surface actuation", in *IEE Colloquium on Electrical Machines and Systems for the More Electric Aircraft (Ref. No.* 1999/180), 9-9 Nov. 1999 1999, pp. 2/1-2/8, doi: 10.1049/ic:19990831.
- [46] M. E. Elbuluk and M. D. Kankam, "Potential starter/generator technologies for future aerospace applications", in *Proceedings of the IEEE 1996 National Aerospace and Electronics Conference NAECON 1996*, 20-22 May 1996 1996, vol. 1, pp. 75-82 vol.1, doi: 10.1109/NAECON.1996.517619.
- [47] M. Qin, L. Dong, X. Huang, and X. Liao, "A rapid design method for high speed aeronautic switched reluctance generator", in 2011 International Conference on Electric Information and Control Engineering, Wuhan, China, 15-17 April 2011 2011, pp. 1937-1941, doi: 10.1109/ICEICE.2011.5777095.
- [48] J. Sun, Z. Wei, S. Wang, Q. Zhan, and Z. Ma, "Modeling and Design of Switched Reluctance Starter/Generator System", in *System Progress in Electromagnetics Research Symposium (PIERS 2009 Moscow)*, Moscow, RUSSIA, 2009., pp. 1977-1983.
- [49] M. Tursini, M. Villani, G. Fabri, and L. Di Leonardo, "A switched-reluctance motor for aerospace application: Design, analysis and results", *Electric Power Systems Research*, vol. 142, pp. 74-83, 2017/01/01/ 2017, doi: <u>https://doi.org/10.1016/j.epsr.2016.08.044</u>.
- [50] W. U. N. Fernando, "Control of switched reluctance generators in continuous conduction mode", in 2014 IEEE Energy Conversion Congress and Exposition (ECCE), 14-18 Sept. 2014 2014, pp. 1360-1365, doi: 10.1109/ECCE.2014.6953576.
- [51] F. P. Scalcon, G. Fang, C. J. V. Filho, H. A. Gründling, R. P. Vieira, and B. Nahid-Mobarakeh, "A Review on Switched Reluctance Generators in Wind Power Applications: Fundamentals, Control and Future Trends", *IEEE Access*, vol. 10, pp. 69412-69427, 2022, doi: 10.1109/ACCESS.2022.3187048.
- [52] Eco Whisper turbine, <u>http://www.acts.asn.au/wp-content/uploads/2012/04/EWT-</u> <u>Technical-Brochure.pdf</u>, 12.3.2019.
- [53] P. P. d. Paula, W. M. d. Silva, J. R. Cardoso, and S. I. Nabeta, "Assessment of the influences of the mutual inductances on switched reluctance machines performance", in *IEEE International Electric Machines and Drives Conference*, 2003. *IEMDC'03.*, 1-4 June 2003 2003, vol. 3, pp. 1732-1738 vol.3, doi: 10.1109/IEMDC.2003.1210686.
- [54] D. Panda and V. Ramanarayanan, "Mutual Coupling and Its Effect on Steady-State Performance and Position Estimation of Even and Odd Number Phase Switched Reluctance Motor Drive", *IEEE Transactions on Magnetics*, vol. 43, no. 8, pp. 3445-3456, 2007, doi: 10.1109/TMAG.2007.898101.
- [55] A. Fleury, J. Dias, R. H. Araújo, W. F. V. Silveira, A. Andrade, and C. Ribeiro, "Effects of the Mutual inductances on the Switched Reluctance Machines", presented at the International Conference on Renewable Energies and Power Quality (ICREPQ'12), Santiago de Compostela, Španjolska, 2012.

- [56] N. Schofield and S. Long, "Generator Operation of a Switched Reluctance Starter/Generator at Extended Speeds", *IEEE Transactions on Vehicular Technology*, vol. 58, no. 1, pp. 48-56, 2009, doi: 10.1109/TVT.2008.924981.
- [57] E. Gizlier, S. Gungor, F. Erfan, and A. F. Mergen, "Investigation of magnetic characteristics and simulation of switched reluctance motor using FEM analysis", in *ELECO 2001 2th Internatinoal Conference on Electrical and Electronics engineering*, Bursa, Turkey, 2001.
- [58] D. Ikeda, N. Yamamura, and M. Ishida, "Proposal of simplified equivalent model for Switched Reluctance Generator", in 2013 International Conference on Electrical Machines and Systems (ICEMS), 26-29 Oct. 2013 2013, pp. 720-724, doi: 10.1109/ICEMS.2013.6754509.
- [59] A. Matveev, V. Kuzmichev, R. Nilssen, and T. Undeland, "Two Approaches For Modeling Of Switched Reluctance Drives", in *Electrical Power Electronics 2003.*, Toulouse, France, 2003, pp. 2-4.
- [60] F. D'hulster, K. Stockman, and R. J. M. Belmans, "Modelling of Switched Reluctance Machines: State of the Art", *International Journal of Modelling and Simulation*, vol. 24, no. 4, pp. 216-223, 1.1.2004 2004, doi: 10.1080/02286203.2004.11442306.
- [61] H. Chi, R. Lin, and J. Chen, "Simplified flux-linkage model for switched-reluctance motors", *IEE Proceedings - Electric Power Applications*, vol. 152, no. 3, pp. 577-583, 2005, doi: 10.1049/ip-epa:20045207.
- [62] Š. Mašić, J. Čorda, and S. Smaka, "Computation of Static, Steady-state and Dynamic Characteristics of the Switched Reluctance Motor", *Automatika*, vol. 43, no. 3-4, pp. 109-117, 2002.
- [63] V. Hrabovcova, P. Rafajdus, and M. Liptak, "Output Power of Switched Reluctance Generator with regard to the Phase Number and Number of Stator and Rotor Poles", *Electronics and Electrical Engineering*, vol. 109, no. 3, pp. 1392-1215, 2011, doi: 10.5755/j01.eee.109.3.164.
- [64] V. Hrabovcová, M. Lipták, and P. Rafajdus, "Magnetic Circuit Optimization for a Switched Reluctance Generator", *International Review of Electrical Engineering*, vol. 5, no. 4, pp. 1571-1579, 2010.
- [65] S. Song and W. Liu, "A Comparative Study on Modeling Methods for Switched Reluctance Machines", *Computer and Information Science*, vol. 3, no. 2, pp. 205-210, 2010. 2010, doi: 10.5539/cis.v3n2p205.
- [66] R. Jayapragash and C. Chellamuthu, "Modeling and performance analysis of switched reluctance generator", in 2014 International Conference on Science Engineering and Management Research (ICSEMR), 27-29 Nov. 2014 2014, pp. 1-4, doi: 10.1109/ICSEMR.2014.7043594.
- [67] F. Messai, M. Makhlouf, A. Messai, K. Nebti, and H. Benalla, "Nonlinear Modeling and Simulation of a Four-phase Switched Reluctance Generator for Wind Energy Applications", *Journal of Clean Energy Technologies*, pp. 127-131, 01/01 2013, doi: 10.7763/JOCET.2013.V1.30.
- [68] D. A. Torrey, "Switched reluctance generators and their control", *IEEE Transactions on Industrial Electronics*, vol. 49, no. 1, pp. 3-14, 2002, doi: 10.1109/41.982243.
- [69] B. Ganji, M. Heidarian, and J. Faiz, "Modeling and analysis of switched reluctance generator using finite element method", *Ain Shams Engineering Journal*, vol. 6, no. 1, pp. 85-93, 2015/03/01/ 2015, doi: <u>https://doi.org/10.1016/j.asej.2014.08.007</u>.

- [70] H. P. Chi, R. L. Lin, and J. F. Chen, "A fast-built flux-linkage model for switchedreluctance motors", *Journal of the Chinese Institute of Engineers*, vol. 29, no. 6, pp. 1071-1080, 2006/09/01 2006, doi: 10.1080/02533839.2006.9671206.
- [71] P. Asadi, *Development and application of an advanced switched reluctance generator drive*, doktorska disertacija, Texas A&M University, 2006.
- [72] B. Han-Kyung, *Control of Switched Reluctance Motors Considering Mutual Inductance*, Virginia, doktorska diertacija, Virginia Polytechnic Institute and State University, 2000.
- [73] M. Farshad, J. Faiz, and C. Lucas, "Development of analytical models of switched reluctance motor in two-phase excitation mode: extended Miller model", *IEEE Transactions on Magnetics*, vol. 41, no. 6, pp. 2145-2155, 2005, doi: 10.1109/TMAG.2005.848323.
- [74] M. Torrent, P. Andrada, B. BlanquÃ, E. Martinez, J. I. Perat, and J. A. Sanchez, "Method for estimating core losses in switched reluctance motors", presented at the European Transactions on Electrical Power, 2011.
- [75] E. Mese, Y. Sozer, J. M. Kokernak, and D. A. Torrey, "Optimal excitation of a high speed switched reluctance generator", in *APEC 2000. Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.00CH37058)*, 6-10 Feb. 2000 2000, vol. 1, pp. 362-368 vol.1, doi: 10.1109/APEC.2000.826128.
- [76] K. Songyan, S. Zhao, H. Fengping, and C. Xin, "Position sensorless technology of switched reluctance motor drives including mutual inductance", *Iet Electric Power Applications*, vol. 11, pp. 1085-1094, 2017.
- [77] O. Ichinokura, T. Kikuchi, K. Nakamura, T. Watanabe, and G. Hai-Jiao, "Dynamic simulation model of switched reluctance generator", *IEEE Transactions on Magnetics*, vol. 39, no. 5, pp. 3253-3255, 2003, doi: 10.1109/TMAG.2003.816739.
- [78] S. Muthulakshmi, S. Aiswariya, M. Senthilkumar, G. S. Naganathan, and S. Sivakarthika, "Investigation of electromagnetic characteristics of Switched Reluctance motor for photovoltaic applications", *Materials Today: Proceedings*, 2021/04/11/ 2021, doi: <u>https://doi.org/10.1016/j.matpr.2021.03.390</u>.
- [79] B. Ganji and M. H. Askari, "Analysis and modeling of different topologies for linear switched reluctance motor using finite element method", *Alexandria Engineering Journal*, vol. 55, no. 3, pp. 2531-2538, 2016/09/01/ 2016, doi: <u>https://doi.org/10.1016/j.aej.2016.07.017</u>.
- [80] A. Parsapour, B. M. Dehkordi, and M. Moallem, "Predicting core losses and efficiency of SRM in continuous current mode of operation using improved analytical technique", *Journal of Magnetism and Magnetic Materials*, vol. 378, pp. 118-127, 2015/03/15/ 2015, doi: <u>https://doi.org/10.1016/j.jmmm.2014.10.148</u>.
- [81] M. Liptak, V. Hrabovcova, and P. Rafajdus, "Equivalent circuit of switched reluctance generator based on DC series generator", *Journal of Electrical Engineering*, vol. 59, no. 1, pp. 23-28, 2008.
- [82] R. Gobbi, N. C. Sahoo, and R. Vejian, "Experimental Investigations on Computer-Based Methods for Determination of Static Electromagnetic Characteristics of Switched Reluctance Motors", *IEEE Transactions on Instrumentation and Measurement*, vol. 57, no. 10, pp. 2196-2211, 2008, doi: 10.1109/TIM.2008.922095.
- [83] S. K. Sahoo, *High-performance torque control of switched reluctance motor*, doktorska disertacija, Department of electrical and computer engineering, National University of Singapore, 2006.

- [84] A. W. F. V. Silveira, D. A. Andrade, A. V. S. Fleury, L. C. Gomes, C. A. Bissochi, and R. J. Dias, "Generated voltage control of the SRM operating as motor/generator", in 2009 Brazilian Power Electronics Conference, 27 Sept.-1 Oct. 2009 2009, pp. 830-835, doi: 10.1109/COBEP.2009.5347764.
- [85] C. G. Turker and F. E. Kuyumcu, "The modelling and the simulation of the switched reluctance generator", in 2008 34th Annual Conference of IEEE Industrial Electronics, 10-13 Nov. 2008 2008, pp. 1421-1426, doi: 10.1109/IECON.2008.4758162.
- [86] Y. Chang and C. Liaw, "On the Design of Power Circuit and Control Scheme for Switched Reluctance Generator", *IEEE Transactions on Power Electronics*, vol. 23, no. 1, pp. 445-454, 2008, doi: 10.1109/TPEL.2007.911872.
- [87] W. G. Hurley and W. H. Wolfle, *Transformers and inductors for power electronics: theory, design and application*, John Wiley & Sons.
- [88] H. J. Chen and W. P. Jing, "Flux linkage determination of the switched reluctance motor from measurable quantities at steady-state operations", *IET Electric Power Applications*, vol. 5, no. 2, pp. 210-216, 2011, doi: 10.1049/iet-epa.2010.0037.
- [89] D. Vukadinovic, S. Grbin, and M. Basic, "Experimental Method of Determining the Equivalent Circuit Parameters of a Switched Reluctance Machine", *Advances in Electrical and Computer Engineering*, vol. 15, no. 3, pp. 93-98, 2015.
- [90] I. Kioskeridis and C. Mademlis, "Optimal efficiency control of switched reluctance generators", *IEEE Transactions on Power Electronics*, vol. 21, no. 4, pp. 1062-1071, 2006, doi: 10.1109/TPEL.2006.876827.
- [91] P. J. d. S. Neto, T. A. d. S. Barros, M. V. d. Paula, R. R. d. Souza, and E. R. Filho, "Design of Computational Experiment for Performance Optimization of a Switched Reluctance Generator in Wind Systems", *IEEE Transactions on Energy Conversion*, vol. 33, no. 1, pp. 406-419, 2018, doi: 10.1109/TEC.2017.2755590.
- [92] W. Ding and D. Liang, "Modeling of a 6/4 Switched Reluctance Motor Using Adaptive Neural Fuzzy Inference System", *IEEE Transactions on Magnetics*, vol. 44, no. 7, pp. 1796-1804, 2008, doi: 10.1109/TMAG.2008.919711.
- [93] K. I. Hwu, "Dynamic Modelling of SRM drive assisted by Powersys and Simulink", *International Review of Electrical Engineering-IREE*, vol. 2, no. 2, pp. 282-292, 2007.
- [94] J. Faiz and R. Fazai, "Optimal Excitation Angles of a High Speed Switched Reluctance Generator by Efficiency Maximization", in 2006 12th International Power Electronics and Motion Control Conference, 30 Aug.-1 Sept. 2006 2006, pp. 287-291, doi: 10.1109/EPEPEMC.2006.4778414.
- [95] X. Ling, L. Gong, B. Li, and C. Liu, "Precise in-situ characterization and cross-validation of the electromagnetic properties of a switched reluctance motor", *Artificial Intelligence in Agriculture*, vol. 4, pp. 74-80, 2020/01/01/ 2020, doi: https://doi.org/10.1016/j.aiia.2020.05.002.
- [96] S.-C. Wang, "An fully-automated measurement system for identifying magnetization characteristics of switched reluctance motors", *Measurement*, vol. 45, no. 5, pp. 1226-1238, 2012/06/01/ 2012, doi: https://doi.org/10.1016/j.measurement.2012.01.014.
- [97] M. Kiani, "Model predictive control of stator currents in Switched Reluctance Generators", in 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), 1-4 June 2014 2014, pp. 842-846, doi: 10.1109/ISIE.2014.6864721.
- [98] B. Fahimi, "On the suitability of switched reluctance drives for starter/generator application", in *Vehicular Technology Conference. IEEE 55th Vehicular Technology*

Conference. VTC Spring 2002 (Cat. No.02CH37367), 6-9 May 2002 2002, vol. 4, pp. 2070-2075 vol.4, doi: 10.1109/VTC.2002.1002988.

- [99] W. Lu, "Modeling and Control of Switched Reluctance Machines for Electro-Mechanical Brake Systems", *doktorska disertacija*, *Electrical Engineering Department*, *The Ohio State University*, 2005.
- [100] B. Shao and A. Emadi, "A digital control for switched reluctance generators", in 2011 IEEE International Conference on Mechatronics, 13-15 April 2011 2011, pp. 182-187, doi: 10.1109/ICMECH.2011.5971278.
- [101] V. N. Walivadekar, V. V. Athani, and G. N. Acharya, "Equivalent circuit for switched reluctance motor", in *Proceedings of TENCON '93. IEEE Region 10 International Conference on Computers, Communications and Automation*, 19-21 Oct. 1993 1993, vol. 5, pp. 568-571 vol.5, doi: 10.1109/TENCON.1993.320706.
- [102] G. P. Viajante, D. A. Andrade, L. C. Gomes, M. A. A. Freitas, V. R. Bernardeli, and A. W. F. V. Silveira, "A voltage control strategy for Switched Reluctance Generator", in 2013 International Electric Machines & Drives Conference, 12-15 May 2013 2013, pp. 421-426, doi: 10.1109/IEMDC.2013.6556131.
- [103] G. P. Viajante *et al.*, "A grid connection scheme of a Switched Reluctance Generator for active power injection", in 2013 International Electric Machines & Drives Conference, 12-15 May 2013 2013, pp. 415-420, doi: 10.1109/IEMDC.2013.6556130.
- [104] L. Ge, B. Burkhart, and R. W. D. Doncker, "Fast Iron Loss and Thermal Prediction Method for Power Density and Efficiency Improvement in Switched Reluctance Machines", *IEEE Transactions on Industrial Electronics*, vol. 67, no. 6, pp. 4463-4473, 2020, doi: 10.1109/TIE.2019.2922937.
- [105] J. Bouchnaif, K. Grari, A. Benslimane, and F. Jeffali, "Analytical approach and thermal signature of Switched reluctance motor iron losses", *Materials Today: Proceedings*, vol. 27, pp. 3161-3166, 2020/01/01/ 2020, doi: <u>https://doi.org/10.1016/j.matpr.2020.04.031</u>.
- [106] D. Vukadinović, Š. Grbin, and M. Bašić, "Novel Equivalent Circuit of Switched Reluctance Machine with Iron Losses", presented at the 4th European Conference for the Applied Mathematics and Informatics (AMATHI '13), Dubrovnik, Hrvatska, 2013.
- [107] A. A. Memon, S. S. H. Bukhari, and J. S. Ro, "Experimental Determination of Equivalent Iron Loss Resistance for Prediction of Iron Losses in a Switched Reluctance Machine", *IEEE Transactions on Magnetics*, vol. 58, no. 2, pp. 1-4, 2022, doi: 10.1109/TMAG.2021.3083491.
- [108] L. Zhenguo, G. Dongdong, L. Dong-Hee, and A. Jin-Woo, "Power closed-loop control for high efficiency switched reluctance generator", in 2012 IEEE Vehicle Power and Propulsion Conference, 9-12 Oct. 2012 2012, pp. 590-593, doi: 10.1109/VPPC.2012.6422793.
- [109] H. Peng, L. Yi, W. Deng, and J. Zhu, "Increasing Output Power of Switched Reluctance Generator with Three-Level Power Converter", presented at the Power and Energy Engineering Conference (APPEEC), Wuhan, Kina, 2011.
- [110] P. Chancharoensook and M. F. Rahman, "Control of a four-phase switched reluctance generator: experimental investigations", in *IEEE International Electric Machines and Drives Conference, 2003. IEMDC'03.*, 1-4 June 2003 2003, vol. 2, pp. 842-848 vol.2, doi: 10.1109/IEMDC.2003.1210333.

- [111] C. Mademlis and I. Kioskeridis, "Optimizing performance in current-controlled switched reluctance generators", *IEEE Transactions on Energy Conversion*, vol. 20, no. 3, pp. 556-565, 2005, doi: 10.1109/TEC.2005.852960.
- [112] B. Bilgin, A. Emadi, and M. Krishnamurthy, "Switched reluctance generator with higher number of rotor poles than stator poles", in 2012 IEEE Transportation Electrification Conference and Expo (ITEC), 18-20 June 2012 2012, pp. 1-6, doi: 10.1109/ITEC.2012.6243494.
- [113] H. Chen, X. Zan, and X. Wang, "Excitation for establishing voltage of Switched Reluctance generator at low rotor speed", in *The 2nd International Symposium on Power Electronics for Distributed Generation Systems*, 16-18 June 2010 2010, pp. 378-381, doi: 10.1109/PEDG.2010.5545826.
- [114] C. Sikder, I. Husain, and Y. Sozer, "Switched Reluctance Generator Control for Optimal Power Generation With Current Regulation", *IEEE Transactions on Industry Applications*, vol. 50, no. 1, pp. 307-316, 2014, doi: 10.1109/TIA.2013.2270971.
- [115] T. A. d. S. Barros, P. J. d. S. Neto, P. S. N. Filho, A. B. Moreira, and E. R. Filho, "An Approach for Switched Reluctance Generator in a Wind Generation System With a Wide Range of Operation Speed", *IEEE Transactions on Power Electronics*, vol. 32, no. 11, pp. 8277-8292, 2017, doi: 10.1109/TPEL.2017.2697822.
- [116] T. A. S. Barros, P. J. S. Neto, P. S. N. Filho, A. B. Moreira, and E. Ruppert, "Approach for performance optimization of switched reluctance generator in variable-speed wind generation system", *Renewable Energy*, vol. 97, pp. 114-128, 2016/11/01/ 2016, doi: <u>https://doi.org/10.1016/j.renene.2016.05.064</u>.
- [117] L. Ke and M. Stiebler, "Voltage Control Of A Switched Reluctance Generator By Means Of Fuzzy Logic Approach", in *Proceedings of the 6th International Conference on Optimization of Electrical and Electronic Equipments*, 14-15 May 1998 1998, vol. 2, pp. 443-446, doi: 10.1109/OPTIM.1998.707972.
- [118] Y. Sozer and D. A. Torrey, "Closed loop control of excitation parameters for high speed switched-reluctance generators", *IEEE Transactions on Power Electronics*, vol. 19, no. 2, pp. 355-362, 2004, doi: 10.1109/TPEL.2003.823178.
- [119] S. Narla, Y. Sozer, and I. Husain, "Switched Reluctance Generator Controls for Optimal Power Generation and Battery Charging", *IEEE Transactions on Industry Applications*, vol. 48, no. 5, pp. 1452-1459, 2012, doi: 10.1109/TIA.2012.2209850.
- [120] D. Yuyu, W. Qing, C. Hao, and Y. Dongsheng, "High efficiency control of switched reluctance generator above base speed", in 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 14-17 Dec. 2016 2016, pp. 1-6, doi: 10.1109/PEDES.2016.7914551.
- [121] H. Chen, "Implementation of a Three-Phase Switched Reluctance Generator System for Wind Power Applications", in 2008 14th Symposium on Electromagnetic Launch Technology, 10-13 June 2008 2008, pp. 1-6, doi: 10.1109/ELT.2008.104.
- [122] W. U. N. Fernando, M. Barnes, and O. Marjanovic, "Excitation control and voltage regulation of switched reluctance generators above base speed operation", in 2011 IEEE Vehicle Power and Propulsion Conference, 6-9 Sept. 2011 2011, pp. 1-6, doi: 10.1109/VPPC.2011.6043081.
- [123] T. Sawata, P. Kjaer, C. Cossar, T. J. E. Miller, and Y. Hayashi, "Fault-tolerant operation of single-phase switched reluctance generators", in *Proceedings of APEC 97 Applied Power*

Electronics Conference, 27-27 Feb. 1997 1997, vol. 1, pp. 553-558 vol.1, doi: 10.1109/APEC.1997.581514.

- [124] A. Arifin, I. H. Al-Bahadly, and S. C. Mukhopadhyay, "A Comprehensive Simulation Platform for Switched Reluctance Generator System", *WSEAS Transactions on Power Systems*, vol. Vol. 7, No. 4, 2012.
- [125] A. El-Shahat, A. Hunter, M. Rahman, and Y. Wu, "Ultra-High Speed Switched Reluctance Motor-Generator for Turbocharger Applications", *Energy Procedia*, vol. 162, pp. 359-368, 2019/04/01/ 2019, doi: <u>https://doi.org/10.1016/j.egypro.2019.04.037</u>.
- [126] M. Liptak, V. Hrabovcová, P. Rafajdus, and B. Zigmund, "Switched Reluctance Machine with Asymmetric Power Converter in Generating Mode", 2007.
- [127] C. Liu, J. Yan, X. Zhu, and D. Liu, "Investigation and practice for basic theory of switched reluctance generators", in 2005 International Conference on Electrical Machines and Systems, 27-29 Sept. 2005 2005, vol. 1, pp. 575-579 Vol. 1, doi: 10.1109/ICEMS.2005.202595.
- [128] S. Dixon and B. Fahimi, "Enhancement of output electric power in switched reluctance generators", in *IEEE International Electric Machines and Drives Conference, 2003. IEMDC'03.*, 1-4 June 2003 2003, vol. 2, pp. 849-856 vol.2, doi: 10.1109/IEMDC.2003.1210334.
- [129] B. Ganji, Z. Mansourkiaee, and J. Faiz, "A fast general core loss model for switched reluctance machine", *Energy*, vol. 89, pp. 100-105, 2015/09/01/ 2015, doi: <u>https://doi.org/10.1016/j.energy.2015.07.058</u>.
- [130] A. Kushwaha and R. Kanagaraj, "Peak-current estimation using simplified current-rise model of switched reluctance generator operating in single-pulse mode", *International Journal of Electrical Power & Energy Systems*, vol. 120, p. 105971, 2020/09/01/ 2020, doi: https://doi.org/10.1016/j.ijepes.2020.105971.
- [131] N. A. Patil and J. S. Lawler, "Issues in the Control of the Switched Reluctance Motor During Continuous Conduction", in 2007 39th North American Power Symposium, 30 Sept.-2 Oct. 2007 2007, pp. 534-540, doi: 10.1109/NAPS.2007.4402362.
- [132] S. Song and W. Liu, "A Novel Method for Nonlinear Modeling and Dynamic Simulation of a Four-phase Switched Reluctance Generator System Based on MATLAB/SIMULINK", in 2007 2nd IEEE Conference on Industrial Electronics and Applications, 23-25 May 2007 2007, pp. 1509-1514, doi: 10.1109/ICIEA.2007.4318659.
- [133] A. Radun, "Generating with the switched reluctance motor", in *Proceedings of 1994 IEEE Applied Power Electronics Conference and Exposition ASPEC'94*, 13-17 Feb. 1994 1994, pp. 41-47 vol.1, doi: 10.1109/APEC.1994.316421.
- [134] M. I. Mosaad, N. I. Elkalashy, and M. G. Ashmawy, "Integrating adaptive control of renewable distributed Switched Reluctance Generation and feeder protection coordination", *Electric Power Systems Research*, vol. 154, pp. 452-462, 2018/01/01/ 2018, doi: <u>https://doi.org/10.1016/j.epsr.2017.09.017</u>.
- [135] T. P. Heese, J., "Design of a Switched Reluctance Generator", U.S. Department of Energy Office of Scientific and Technical Information: Lappeenranta, Finland, 1996.
- [136] J. S. Lawler, J. M. Bailey, J. W. McKeever, and P. J. Otaduy, "Impact of continuous conduction on the constant power speed range of the switched reluctance motor", in *IEEE International Conference on Electric Machines and Drives*, 2005., 15-15 May 2005 2005, pp. 1285-1292, doi: 10.1109/IEMDC.2005.195888.

- [137] H. Hannoun, M. Hilairet, and C. Marchand, "Experimental Validation of a Switched Reluctance Machine Operating in Continuous-Conduction Mode", *IEEE Transactions on Vehicular Technology*, vol. 60, no. 4, pp. 1453-1460, 2011, doi: 10.1109/TVT.2011.2124478.
- [138] V. Troskot, *Regulacija prekidačkog reluktantnog generatora*, Diplomski rad, FESB Split, 2011.
- [139] S. N. Vukosavić, *Electrical Machines*, New York 10013, USA: Springer Science & Business Media, 2013.
- [140] J. Na, Chen, Q., & Ren, X., "Friction Dynamics and Modeling. Adaptive Identification and Control of Uncertain Systems with Non-Smooth Dynamics", 11–18., 2018.
- [141] Internationa Rectifier: INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE, <u>https://www.infineon.com/dgdl/Infineon-IRG4PH50UD-DataSheet-v01_00-</u> EN.pdf?fileId=5546d462533600a40153564871582327, 23.6.2024.
- [142] D. U. Nicolai, "Determining switching losses of SEMIKRON IGBT modules", 2014.
- [143] D. a. P. Graovac, M., "IGBT Power Losses Calculation Using the Data Sheet Parameters", 2009.
- [144] W. Yan, H. Chen, K. Wang, and L. Chen, "Dynamic circuit model considering core losses and phase interaction for switched reluctance machines", *Iet Electric Power Applications*, vol. 12, pp. 826-836, 2018.
- [145] A. Garcia Asuero, A. Sayago, and G. González, "The Correlation Coefficient: An Overview", *Critical Reviews in Analytical Chemistry - CRIT REV ANAL CHEM*, vol. 36, pp. 41-59, 01/01 2006, doi: 10.1080/10408340500526766.
- [146] J. Mishra, M. Pattnaik, and S. Samanta, "Drift-Free Perturb and Observe MPPT Algorithm With Improved Performance for SEIG-Based Stand-Alone Wind Energy Generation System", *IEEE Transactions on Power Electronics*, vol. 35, no. 6, pp. 5842-5849, 2020, doi: 10.1109/TPEL.2019.2952324.
- [147] A. S. Martyanov, A. O. Troickiy, and D. V. Korobatov, "Performance Assessment of Perturbation and Observation Algorithm for Wind Turbine", in 2018 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 15-18 May 2018 2018, pp. 1-5, doi: 10.1109/ICIEAM.2018.8728559.
- [148] L. Egiziano, A. Giustiniani, G. Petrone, G. Spagnuolo, and M. Vitelli, "Optimization of Perturb and Observe control of grid connected PEM Fuel Cells", in 2009 International Conference on Clean Electrical Power, 9-11 June 2009 2009, pp. 775-781, doi: 10.1109/ICCEP.2009.5211962.
- [149] A. Giustiniani, G. Petrone, C. Pianese, M. Sorrentino, G. Spagnuolo, and M. Vitelli, "PEM Fuel Cells Control by means of the Perturb and Observe Technique", in *IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics*, 6-10 Nov. 2006 2006, pp. 4349-4354, doi: 10.1109/IECON.2006.347792.
- [150] D. Beriber and A. Talha, "MPPT techniques for PV systems", in 4th International Conference on Power Engineering, Energy and Electrical Drives, 13-17 May 2013 2013, pp. 1437-1442, doi: 10.1109/PowerEng.2013.6635826.
- [151] N. Verma, A. Jain, Nishi, H. Ahuja, and G. Singh, "Maximum Power Point Tracking MPPT Methods for Photovoltaic Modules", in 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 4-5 March 2021 2021, pp. 223-227, doi: 10.1109/ICACITE51222.2021.9404571.

PRILOG A

Parametri prekidačkog reluktantnog stroja

Broj faznih namota: 4 Broj statorskih polova: 8 Broj rotorskih polova: 6 Nazivna snaga: 1,1 kW Nazivna struja: 6 A Nazivna brzina vrtnje: 2000 r/min Vanjski promjer statora: $d_{sv} = 135$ mm Unutarnji promjer statora: $d_{su} = 80$ mm Promjer rotora: $d_r = 79,5$ mm Duljina stroja: 300 mm Luk statorskog pola: $\alpha_s = 22^\circ$ Luk rotorskog pola: $\alpha_r = 24^\circ$ Broj namota po fazi: 300

Slika A.1. Fotografija statora SRM-a a) i skica poprečnog presjeka statora b)

Slika A.2. Fotografija rotora SRM-a a) i skica poprečnog presjeka rotora b)

Parametri pogonskog istosmjernog stroja

Nazivna snaga: 1,1 kW Nazivna struja armature: 9 A Maksimalna brzina vrtnje: 3000 r/min Nazivni napon armature: 115 V Nazivni napon uzbude: 110 V Nazivna struja uzbude: 0,52 A

PRILOG B

Koeficijenti aproksimacijskih funkcija

1

Koeficijenti aproksimacijskog polinoma funkcije $\psi_{pp}(i_f)$:

$$a_{pp1} = 3,275 \cdot 10^{-1}$$

$$a_{pp2} = -8,9117 \cdot 10^{-3}$$

$$a_{pp3} = -1,2256 \cdot 10^{-2}$$

$$a_{pp4} = 1,9876 \cdot 10^{-3}$$

$$a_{pp5} = -9,0779 \cdot 10^{-5}$$

Koeficijenti aproksimacijskih polinoma funkcije $\psi_m(i_f)$:

$$a_{m1} = 1,5588 \cdot 10^{-1}$$
$$a_{m2} = -4,5792 \cdot 10^{-3}$$
$$a_{m3} = -6,8236 \cdot 10^{-3}$$
$$a_{m4} = 9,3844 \cdot 10^{-4}$$
$$a_{m5} = -3,9258 \cdot 10^{-5}$$

Koeficijent linearne funkcije $\psi_{pn}(i_f)$: $a_{pn} = 2,6393 \cdot 10^{-2}$

Koeficijenti aproksimacijskih polinoma funkcije *L_{mt}(i_f*):

$$a_{mt0} = -1,65 \cdot 10^{-2}$$
$$a_{mt1} = 1,03 \cdot 10^{-3}$$
$$a_{mt2} = 5,67 \cdot 10^{-5}$$
$$a_{mt3} = -2,48 \cdot 10^{-6}$$
$$a_{mt4} = -9,16 \cdot 10^{-8}$$
PRILOG C

Algoritam za filtriranje mjernih podataka

Razvijeni algoritam za filtriranje mjernih podataka ima za cilj minimizirati mjernu pogrešku senzora fazne struje te ovisnost jedne varijable o drugoj učiniti glatkom krivuljom koja ima samo jedan maksimum. Algoritam za filtriranje mjernih podataka, napisan u programu Matlab, bit će objašnjen na primjeru funkcijske ovisnosti y = f(x) zadane tablično. Ovaj kod glasi:

1: x=[1:1:10]; 2: y=[9 12 11 9 10 6 7 2 3 1]; 3: for j=1:5 4: for i=2:9 5: y(i)=y(i)-0.1*((y(i)-y(i+1))-(y(i-1)-y(i))); 6: end 7: end

Na slici C.1 prikazana je funkcija y = f(x) koja je definirana 1. i 2. linijom gornjeg programskog koda.

Slika C.1. Prikaz funkcije y = f(x) *koja je definirana* 1. *i* 2. *linijom programskog koda*

5. linija koda izvršava se unutar dvije *for* petlje. Unutarnja *for* petlja izvršava se na svim podacima definiranim nizom y osim prvog i zadnjeg. Ta dva podatka algoritam ne mijenja. Moguće ih je zadati prije izvršenja algoritma kao rubne uvjete. Broj izvršavanja vanjske *for* petlje određuje se metodom pokušaja i pogreške. Koeficijent 0,1 u 5. liniji koda također se određuje metodom pokušaja i pogreške. On određuje kojim intenzitetom će se pomicati navedeni podaci. Izvršavanjem 5. linije koda samo nad drugim podatkom funkcije y taj podatak s pomiče prema dolje za 0,4 što je prikazano slikom C.2.

Slika C.2. Prikaz točaka funkcije y = f(x) prije (crvene točke) i nakon (plava točka) što se 5. linija koda izvrši nad drugim podatkom funkcije y = f(x)

Izvršavanjem unutarnje *for* petlje nad svim podacima iz niza *y* dobiva se rezultat prikazan na slici C.3 pri čemu plave točke pokazuju položaje novih i pomaknutih pojedinih točaka funkcije y.

Slika C.3 Prikaz točaka funkcije y = f(x) prije (crvene točke) i nakon (plave točke) što se unutarnja for petlja izvrši nad svim točkama funkcije y = f(x)

Ako se vanjska *for* petlja izvrši 5 puta kao što je definirano 3. linijom koda dobiva se rezultat prikazan na slici C.4.

Slika C.4. Prikaz točaka funkcije y = f(x) prije (crvene točke) i nakon (plave točke) što se vanjska for petlja izvrši 5 puta nad svim točkama funkcije y = f(x)

U nastavku se nalazi modificirani algoritam za filtriranje mjernih podataka. U tom kodu je u vanjsku *for* petlju dodana *while* petlja koja osigurava da suma razlika između originalnih i pomaknutih podataka bude po apsolutnoj vrijednosti manja od 0,001 kako se fizikalnost ovisnosti y = f(x) ne bi narušila. Na slici C.5 žutim točkama prikazan je rezultat dobiven primjenom koda navedenog u nastavku.

```
x=[1:1:10];
y=[9 12 11 9 10 6 7 2 3 1];
y1=y;
for j=1:5
  for i=2:9
  y(i)=y(i)-0.1*((y(i)-y(i+1))-(y(i-1)-y(i)));
  end
e=999;
while abs(e)>0.001
  e=0;
  for n=2:9
     e=e+(y1(n)-y(n));
  end
y(2:9)=y(2:9)*(1+0.0001*e);
end
end
```


Slika C.5. Prikaz točaka funkcije y = f(x) bez primjene (plave točke) i uz primjenu (žute točke) while petlje

Također, suma razlika između polaznih točaka funkcije y = f(x) označenih crvenim točkama na slici C.1 i žutih točaka na slici C.5 je po apsolutnoj vrijednosti manja od 0,001.

PRILOG D

Sklopni gubici tranzistora

Sklopni gubici tranzistora određeni su sljedećom jednadžbom:

$$P_{skl} = \frac{n}{60} \cdot 6 \cdot 1,5 \cdot \left(\frac{i_{iskl}}{24}\right) \cdot \left(\frac{u}{800}\right)^{1,2} \cdot \left(\frac{22}{5}\right)^{0,15}$$
(D.1)

gdje je:

n brzina vrtnje [r/min],

P_{skl} sklopni gubici tranzistora [mW],

*i*_{iskl} struja pri kojoj se tranzistori isklapaju [A],

u trenutni iznos napona tranzistora na početku uklapanja ili na kraju isklapanja [V].

U jednom okretaju rotora tranzistori se uklope i isklope 6 puta jer kraj svakog statorskog pola prođe svih 6 rotorskih polova. Dijeljenjem brzine vrtnje s 60 dobiva se broj okretaja SRG-a u jednoj sekundi. Množenjem tog broja sa 6 dobiva se sklopna frekvencija tranzistora. Ona pri brzini vrtnje 3000 r/min iznosi 300 Hz, a pri 2000 r/min iznosi 200 Hz. IGBT tranzistor tipa (IRG4PH50UD) testiran je pri naponu od 800 V i nazivnoj struji od 24 A. Za ove uvjete, energija isklapanja tranzistora iznosi 1,5 mJ. U kataloškim podacima navedena je ovisnost ukupnih sklopnih gubitaka o otporu geita, pri čemu se pretpostavlja da i ovisnost gubitaka isklapanja ovisi na isti način. Navedeni su podaci za otpor geita 5 Ω , a u pretvaraču je korišten otpor od 22 Ω .

Gubici vođenja tranzistora i dioda

Na slikama D.1 i D.2 prikazane su izlazne karakteristike tranzistora (tip IRG4PH50UD) i porednih dioda tog tranzistora. Karakteristike su prikazane za temperaturu 25 °C, a linearizirane su da bi se odredio njihov napon praga i dinamički otpor.

Slika D.1. Izlazna karakteristika tranzistora tipa IRG4PH50UD

Slika D.2. Izlazna karakteristika poredne diode tranzistora tipa IRG4PH50UD Sljedećim jednadžbama određuju se gubici vođenja tranzistora i dioda:

$$P_T = u_{CE0} \cdot I_{sr,T} + r_C \cdot I_{ef,T}^2$$

$$P_D = u_{D0} \cdot I_{sr,D} + r_D \cdot I_{ef,D}^2$$
(D.2)

gdje je:

*u*_{CE0} napon praga tranzistora,

 u_{D0} napon praga diode,

 r_T dinamički otpor tranzistora,

r_D dinamički otpor diode,

Isr, T srednja vrijednost struje tranzistora,

 $I_{ef,T}$ efektivna vrijednost struje tranzistora,

Isr,D srednja vrijednost struje diode,

Ief,D efektivna vrijednost struje diode.

Gubici pretvarača

U asimetričnom mosnom pretvaraču ima 8 tranzistora. Ukupni poluvodički gubici pretvarača dobivaju se uvrštavanjem vrijednosti dobivenih jednadžbama (D.1) i (D.2) u sljedeću jednadžbu:

$$P_p = 8 \cdot (P_{skl} + P_T + P_D) \tag{D.3}$$

Ukupni gubici asimetričnog mosnog pretvarača i SRG-a dobiveni su kao razlika eksperimentalno određene ulazne snage i izlazne snage što je opisano sljedećom jednadžbom:

$$P_g = M \cdot \omega - \frac{u^2}{R_t} \tag{D.4}$$

U tablici D.1 za eksperimentalno realizirane radne točke i položaje uklapanja navedeni su ukupni gubici asimetričnog mosnog pretvarača i SRG-a dobiveni jednadžbom (D.4) te samog pretvarača dobiveni jednadžbom (D.3). U zadnjem stupcu istaknut je udio gubitaka pretvarača u ukupnim gubicima.

Tablica D.1. Otpor trošila, položaj uklapanja, brzina vrtnje, napon između sabirnica te gubici zabilježeni u realiziranim eksperimentima

Br.	$R_{t}\left(\Omega ight)$	θ_u (°)	<i>n</i> (r/min)	<i>u</i> (V)	$P_{p}\left(\mathbf{W}\right)$	$P_{g}\left(\mathbf{W}\right)$	P_{p} 100 (0()
mj.							$\overline{P_{\sigma}}$ · 100 (%)
točke							8
1	110	-15	2000	150	8,83	103,84	8,50
2	110	-15	2000	200	12,17	145,70	8,35
3	110	-15	2000	250	15,87	178,20	8,91
4	110	-15	2000	300	20,05	227,63	8,81

5	110	-15	3000	150	7,27	67,85	10,71
6	110	-15	3000	200	9,97	95,12	10,48
7	110	-15	3000	250	12,85	129,97	9,89
8	110	-15	3000	300	15,92	146,17	10,89
9	110	-10	2000	150	7,72	95,58	8,07
10	110	-10	2000	200	10,55	130,05	8,12
11	110	-10	2000	250	13,48	161,82	8,33
12	110	-10	2000	300	16,85	189,02	8,91
13	110	-10	3000	150	6,84	71,80	9,52
14	110	-10	3000	200	9,39	85,50	10,99
15	110	-10	3000	250	12,10	120,42	10,05
16	110	-10	3000	300	14,88	140,52	10,59
17	110	-5	2000	150	7,14	90,28	7,91
18	110	-5	2000	200	9,84	110,16	8,93
19	110	-5	2000	250	12,36	136,76	9,03
20	110	-5	2000	300	14,83	160,78	9,22
21	110	-5	3000	150	6,41	67,28	9,52
22	110	-5	3000	200	8,90	74,48	11,95
23	110	-5	3000	250	11,39	105,81	10,76
24	110	-5	3000	300	13,95	127,04	10,98
25	65	-15	2000	150	12,62	115,33	10,94
26	65	-15	2000	200	17,55	151,63	11,58
27	65	-15	2000	250	23,28	206,33	11,28
28	65	-15	3000	150	10,93	66,25	16,50
29	65	-15	3000	200	15,15	106,29	14,25
30	65	-15	3000	250	19,47	180,17	10,81
31	65	-15	3000	300	23,90	188,20	12,70
32	65	-10	2000	150	11,90	90,11	13,20
33	65	-10	2000	200	16,55	121,33	13,64
34	65	-10	2000	250	21,70	138,74	15,64
35	65	-10	3000	150	11,23	58,21	19,29
36	65	-10	3000	200	15,64	90,23	17,34
37	65	-10	3000	250	19,64	188,90	10,40
38	65	-10	3000	300	24,22	179,63	13,49
39	65	-5	2000	150	11,59	94,12	12,31
40	65	-5	2000	200	16,31	101,84	16,01
41	65	-5	2000	250	21,13	125,14	16,89
42	65	-5	3000	150	11,35	60,26	18,83
43	65	-5	3000	200	15,93	73,67	21,62
44	65	-5	3000	250	20,58	178,71	11,52
45	65	-5	3000	300	25,61	188,40	13,59

46	45	-15	2000	150	17,34	158,35	10,95
47	45	-15	2000	200	24,57	217,64	11,29
48	45	-15	3000	150	15,82	124,16	12,74
49	45	-15	3000	200	22,10	160,93	13,73
50	45	-15	3000	250	28,35	185,64	15,27
51	45	-10	2000	150	17,48	130,49	13,39
52	45	-10	2000	200	24,92	172,14	14,48
53	45	-10	3000	150	16,88	105,29	16,03
54	45	-10	3000	200	23,98	149,79	16,01
55	45	-10	3000	250	30,64	199,06	15,39
56	45	-5	2000	150	18,02	127,99	14,08
57	45	-5	2000	200	26,38	163,07	16,18
58	45	-7	3000	150	19,63	107,29	18,30

PRILOG E

Radne točke prekidačkog reluktantnog generatora s pripadajućim varijablama kandidatima

-			-					-		
Br. mj. točke	Radna točka	n (r/min)	u (V)	$R_t(\Omega)$	<i>P</i> (W)	$ \theta_u $ (°)	$I_{sr}\left(A ight)$	Ief (A)	3	Pg (W)
1	1 - 1	2000	150	110	204,55	-15	0,44	0,59	0,48	53,38
2	1 - 2	2000	150	110	204,55	-13	0,42	0,58	0,46	55,37
3	1 - 3	2000	150	110	204,55	-11	0,40	0,57	0,44	56,22
4	1 - 4	2000	150	110	204,55	-9	0,39	0,56	0,42	60,52
5	1 - 5	2000	150	110	204,55	-7	0,38	0,56	0,40	60,47
6	1 - 6	2000	150	110	204,55	-5	0,37	0,57	0,38	57,89
7	1 - 7	2000	150	110	204,55	-3	0,36	0,58	0,37	60,16
8	1 - 8	2000	150	110	204,55	-1	0,36	0,60	0,35	52,10
9	1 - 9	2000	150	110	204,55	1	0,36	0,62	0,34	52,45
10	1 - 10	2000	150	110	204,55	3	0,36	0,65	0,33	50,04
11	1 - 11	2000	150	110	204,55	5	0,38	0,69	0,33	52,78
12	2 - 1	2000	200	110	363,64	-15	0,59	0,79	0,47	114,50
13	2 - 2	2000	200	110	363,64	-13	0,56	0,77	0,45	107,68
14	2 - 3	2000	200	110	363,64	-11	0,53	0,75	0,43	101,00
15	2 - 4	2000	200	110	363,64	-9	0,51	0,75	0,41	95,06
16	2 - 5	2000	200	110	363,64	-7	0,49	0,74	0,39	86,29
17	2 - 6	2000	200	110	363,64	-5	0,48	0,75	0,37	83,80
18	2 - 7	2000	200	110	363,64	-3	0,47	0,76	0,36	78,51
19	2 - 8	2000	200	110	363,64	-1	0,47	0,78	0,34	81,00
20	2 - 9	2000	200	110	363,64	1	0,47	0,81	0,32	76,37
21	2 - 10	2000	200	110	363,64	3	0,48	0,85	0,32	67,39
22	2 - 11	2000	200	110	363,64	5	0,50	0,92	0,32	72,28
23	3 - 1	2000	250	110	568,18	-15	0,74	0,98	0,47	135,57
24	3 - 2	2000	250	110	568,18	-13	0,70	0,96	0,44	129,99
25	3 - 3	2000	250	110	568,18	-11	0,66	0,93	0,42	127,60
26	3 - 4	2000	250	110	568,18	-9	0,63	0,92	0,40	121,50
27	3 - 5	2000	250	110	568,18	-7	0,61	0,92	0,38	116,24

Tablica E.1. Radne točke SRG-a s pripadajućim varijablama kandidatima

28	3 - 6	2000	250	110	568,18	-5	0,59	0,93	0,36	109,19
29	3 - 7	2000	250	110	568,18	-3	0,58	0,95	0,34	102,30
30	3 - 8	2000	250	110	568,18	-1	0,58	0,97	0,33	93,22
31	3 - 9	2000	250	110	568,18	1	0,58	1,01	0,32	88,71
32	3 - 10	2000	250	110	568,18	3	0,59	1,07	0,31	94,70
33	3 - 11	2000	250	110	568,18	5	0,63	1,17	0,32	96,25
34	4 - 1	2000	300	110	818,18	-15	0,90	1,20	0,48	169,94
35	4 - 2	2000	300	110	818,18	-13	0,84	1,16	0,44	162,51
36	4 - 3	2000	300	110	818,18	-11	0,79	1,12	0,42	149,57
37	4 - 4	2000	300	110	818,18	-9	0,75	1,11	0,39	140,27
38	4 - 5	2000	300	110	818,18	-7	0,72	1,11	0,37	136,31
39	4 - 6	2000	300	110	818,18	-5	0,71	1,12	0,35	132,09
40	4 - 7	2000	300	110	818,18	-3	0,69	1,14	0,33	121,20
41	4 - 8	2000	300	110	818,18	-1	0,69	1,17	0,32	116,54
42	4 - 9	2000	300	110	818,18	1	0,70	1,22	0,31	107,74
43	4 - 10	2000	300	110	818,18	3	0,72	1,31	0,31	113,68
44	4 - 11	2000	300	110	818,18	5	0,78	1,46	0,33	129,67
45	5 - 1	3000	150	110	204,55	-15	0,38	0,50	0,41	48,75
46	5 - 2	3000	150	110	204,55	-13	0,36	0,50	0,40	44,03
47	5 - 3	3000	150	110	204,55	-11	0,35	0,50	0,38	42,66
48	5 - 4	3000	150	110	204,55	-9	0,34	0,50	0,36	52,42
49	5 - 5	3000	150	110	204,55	_7	0,34	0,51	0,34	41,82
50	5 - 6	3000	150	110	204,55	-5	0,34	0,52	0,33	41,44
51	5 - 7	3000	150	110	204,55	-3	0,33	0,53	0,32	35,09
52	5 - 8	3000	150	110	204,55	-1	0,33	0,55	0,31	45,84
53	5 - 9	3000	150	110	204,55	1	0,34	0,58	0,30	44,28
54	5 - 10	3000	150	110	204,55	3	0,37	0,63	0,31	37,76
55	6 - 1	3000	200	110	363,64	-15	0,50	0,67	0,39	81,58
56	6 - 2	3000	200	110	363,64	-13	0,47	0,66	0,38	76,46
57	6 - 3	3000	200	110	363,64	-11	0,46	0,66	0,36	75,66
58	6 - 4	3000	200	110	363,64	-9	0,45	0,66	0,35	73,85
59	6 - 5	3000	200	110	363,64	-7	0,44	0,67	0,33	66,75
60	6 - 6	3000	200	110	363,64	-5	0,44	0,68	0,32	64,00
61	6 - 7	3000	200	110	363,64	-3	0,43	0,69	0,31	65,17
62	6 - 8	3000	200	110	363,64	-1	0,43	0,72	0,30	60,28
63	6 - 9	3000	200	110	363,64	1	0,45	0,76	0,29	59,22

64	6 - 10	3000	200	110	363,64	3	0,48	0,84	0,30	52,69
65	7 - 1	3000	250	110	568,18	-15	0,62	0,84	0,39	118,13
66	7 - 2	3000	250	110	568,18	-13	0,59	0,82	0,37	112,63
67	7 - 3	3000	250	110	568,18	-11	0,57	0,81	0,35	110,37
68	7 - 4	3000	250	110	568,18	-9	0,55	0,82	0,33	102,73
69	7 - 5	3000	250	110	568,18	-7	0,54	0,83	0,32	94,87
70	7 - 6	3000	250	110	568,18	-5	0,54	0,84	0,31	89,90
71	7 - 7	3000	250	110	568,18	-3	0,53	0,86	0,30	72,77
72	7 - 8	3000	250	110	568,18	-1	0,53	0,89	0,29	68,25
73	7 - 9	3000	250	110	568,18	1	0,55	0,95	0,28	66,27
74	7 - 10	3000	250	110	568,18	3	0,61	1,07	0,30	94,54
75	8 - 1	3000	300	110	818,18	-15	0,74	1,01	0,38	145,29
76	8 - 2	3000	300	110	818,18	-13	0,70	0,98	0,37	143,84
77	8 - 3	3000	300	110	818,18	-11	0,67	0,97	0,35	121,43
78	8 - 4	3000	300	110	818,18	-9	0,65	0,97	0,33	124,08
79	8 - 5	3000	300	110	818,18	_7	0,64	0,98	0,31	115,18
80	8 - 6	3000	300	110	818,18	-5	0,64	1,01	0,30	105,93
81	8 - 7	3000	300	110	818,18	-3	0,63	1,03	0,29	105,94
82	8 - 8	3000	300	110	818,18	-1	0,64	1,07	0,28	93,45
83	8 - 9	3000	300	110	818,18	1	0,67	1,15	0,28	98,65
84	8 - 10	3000	300	110	818,18	3	0,75	1,32	0,30	110,02
85	9 - 1	2000	150	65	346,15	-15	0,61	0,83	0,37	100,51
86	9 - 2	2000	150	65	346,15	-13	0,59	0,82	0,35	93,37
87	9 - 3	2000	150	65	346,15	-11	0,57	0,82	0,34	86,22
88	9 - 4	2000	150	65	346,15	-9	0,55	0,82	0,32	87,69
89	9 - 5	2000	150	65	346,15	_7	0,54	0,83	0,31	87,39
90	9 - 6	2000	150	65	346,15	-5	0,54	0,84	0,30	88,45
91	9 - 7	2000	150	65	346,15	-3	0,54	0,87	0,29	84,58
92	9 - 8	2000	150	65	346,15	-1	0,55	0,91	0,29	81,50
93	9 - 9	2000	150	65	346,15	1	0,57	0,97	0,30	80,67
94	10 - 1	2000	200	65	615,38	-15	0,82	1,11	0,38	136,50
95	10 - 2	2000	200	65	615,38	-13	0,79	1,09	0,37	132,31
96	10 - 3	2000	200	65	615,38	-11	0,75	1,08	0,35	132,71
97	10 - 4	2000	200	65	615,38	-9	0,73	1,09	0,33	124,47
98	10 - 5	2000	200	65	615,38	-7	0,72	1,09	0,32	115,04
99	10 - 6	2000	200	65	615,38	-5	0,71	1,12	0,31	103,75

100	10 - 7	2000	200	65	615,38	-3	0,71	1,15	0,30	106,55
101	10 - 8	2000	200	65	615,38	-1	0,72	1,20	0,30	108,36
102	10 - 9	2000	200	65	615,38	1	0,77	1,31	0,31	124,18
103	11 - 1	2000	250	65	961,54	-15	1,03	1,39	0,39	183,93
104	11 - 2	2000	250	65	961,54	-13	0,97	1,36	0,37	174,85
105	11 - 3	2000	250	65	961,54	-11	0,93	1,35	0,35	143,38
106	11 - 4	2000	250	65	961,54	-9	0,90	1,35	0,33	133,02
107	11 - 5	2000	250	65	961,54	-7	0,88	1,35	0,32	123,03
108	11 - 6	2000	250	65	961,54	-5	0,87	1,38	0,31	126,72
109	11 - 7	2000	250	65	961,54	-3	0,88	1,43	0,30	121,97
110	11 - 8	2000	250	65	961,54	-1	0,90	1,51	0,30	117,77
111	11 - 9	2000	250	65	961,54	1	0,98	1,68	0,32	147,49
112	12 - 1	3000	150	65	346,15	-15	0,54	0,74	0,33	61,44
113	12 - 2	3000	150	65	346,15	-13	0,53	0,74	0,32	72,99
114	12 - 3	3000	150	65	346,15	-11	0,52	0,75	0,31	64,25
115	12 - 4	3000	150	65	346,15	-9	0,51	0,75	0,30	61,72
116	12 - 5	3000	150	65	346,15	-7	0,51	0,77	0,29	61,51
117	12 - 6	3000	150	65	346,15	-5	0,52	0,81	0,28	61,85
118	12 - 7	3000	150	65	346,15	-3	0,54	0,85	0,29	64,28
119	13 - 1	3000	200	65	615,38	-15	0,72	0,99	0,32	108,82
120	13 - 2	3000	200	65	615,38	-13	0,70	0,99	0,30	103,91
121	13 - 3	3000	200	65	615,38	-11	0,68	0,99	0,30	101,44
122	13 - 4	3000	200	65	615,38	-9	0,67	0,99	0,29	89,71
123	13 - 5	3000	200	65	615,38	-7	0,67	1,02	0,28	90,24
124	13 - 6	3000	200	65	615,38	-5	0,68	1,06	0,28	87,86
125	13 - 7	3000	200	65	615,38	-3	0,71	1,13	0,28	87,27
126	14 - 1	3000	250	65	961,54	-15	0,88	1,21	0,32	130,41
127	14 - 2	3000	250	65	961,54	-13	0,86	1,21	0,30	118,24
128	14 - 3	3000	250	65	961,54	-11	0,83	1,20	0,29	110,65
129	14 - 4	3000	250	65	961,54	-9	0,82	1,22	0,28	108,92
130	14 - 5	3000	250	65	961,54	-7	0,82	1,24	0,27	100,67
131	14 - 6	3000	250	65	961,54	-5	0,83	1,29	0,27	100,36
132	14 - 7	3000	250	65	961,54	-3	0,87	1,40	0,28	105,60
133	15 - 8	3000	300	65	1384,62	-15	1,04	1,43	0,32	122,49
134	15 - 1	3000	300	65	1384,62	-13	1,01	1,42	0,30	117,49
135	15 - 2	3000	300	65	1384,62	-11	0,98	1,42	0,29	115,48

136	15 - 3	3000	300	65	1384,62	-9	0,97	1,44	0,28	105,90
137	15 - 4	3000	300	65	1384,62	_7	0,97	1,48	0,27	98,61
138	15 - 5	3000	300	65	1384,62	-5	0,99	1,55	0,27	110,13
139	15 - 6	3000	300	65	1384,62	-3	1,07	1,72	0,28	125,44
140	16 - 1	2000	150	45	500,00	-15	0,81	1,12	0,33	132,95
141	16 - 2	2000	150	45	500,00	-13	0,79	1,11	0,32	130,63
142	16 - 3	2000	150	45	500,00	-11	0,77	1,11	0,31	123,87
143	16 - 4	2000	150	45	500,00	-9	0,76	1,12	0,30	121,29
144	16 - 5	2000	150	45	500,00	-7	0,76	1,15	0,30	120,82
145	16 - 6	2000	150	45	500,00	-5	0,76	1,19	0,29	126,92
146	16 - 7	2000	150	45	500,00	-3	0,80	1,29	0,30	130,73
147	17 - 1	2000	200	45	888,89	-15	1,08	1,48	0,33	186,13
148	17 - 2	2000	200	45	888,89	-13	1,05	1,47	0,32	180,74
149	17 - 3	2000	200	45	888,89	-11	1,02	1,48	0,31	176,44
150	17 - 4	2000	200	45	888,89	-9	1,00	1,49	0,30	172,09
151	17 - 5	2000	200	45	888,89	_7	1,00	1,53	0,29	169,56
152	17 - 6	2000	200	45	888,89	-5	1,02	1,61	0,29	172,36
153	17 - 7	2000	200	45	888,89	-3	1,13	1,81	0,31	205,71
154	18 - 1	3000	150	45	500,00	-15	0,73	1,02	0,29	95,39
155	18 - 2	3000	150	45	500,00	-13	0,73	1,04	0,28	101,82
156	18 - 3	3000	150	45	500,00	-11	0,73	1,06	0,27	96,88
157	18 - 4	3000	150	45	500,00	-9	0,74	1,10	0,27	100,77
158	18 - 5	3000	150	45	500,00	-7	0,80	1,22	0,29	114,95
159	19 - 1	3000	200	45	888,89	-15	0,99	1,38	0,29	157,35
160	19 - 2	3000	200	45	888,89	-13	0,97	1,38	0,28	162,25
161	19 - 3	3000	200	45	888,89	-11	0,97	1,41	0,27	159,18
162	19 - 4	3000	200	45	888,89	-9	0,99	1,48	0,28	158,86
163	20 - 1	3000	250	45	1388,89	-15	1,23	1,71	0,28	205,53
164	20 - 2	3000	250	45	1388,89	-13	1,21	1,72	0,27	197,14
165	20 - 3	3000	250	45	1388,89	-11	1,20	1,75	0,27	184,89
166	20 - 4	3000	250	45	1388,89	-9	1,24	1,86	0,27	199,50

ŽIVOTOPIS

Šime Grbin rođen je 9. 1. 1985. u Zadru, Hrvatska. Pohađao je Osnovnu školu Petra Lorinija na Salima i Osnovnu školu Šime Budinića u Zadru. Gimnaziju Franje Petrića pohađao je također u Zadru. 2003. godine upisao je studij Elektrotehnike, smjer Elektroenergetika, na Fakultetu elektrotehnike, strojarstva i brodogradnje (FESB) u Splitu, Sveučilišta u Splitu. Diplomirao je na usmjerenju Električni pogoni i postrojenja 2008. godine. Iste godine zapošljava se u Elektri Zadar kao samostalni inženjer elektrotehnike. Radio je u Odjelu za mjerne uređaje i Odjelu za mjerenje i zaštitu od 2008. do 2014. godine. Trenutno radi u Odjelu za realizaciju investicijskih projekata. Poslijediplomski doktorski studij Elektrotehnike i informacijske tehnologije upisuje na Fakultetu elektrotehnike, strojarstva i brodogradnje u Splitu 2009. godine. Kao koautor do sad je objavio jedan znanstveni rad u časopisu kategorije A i jedan znanstveni rad kategorije C u zborniku radova međunarodnog znanstvenog skupa.

CURRICULUM VITAE

Šime Grbin was born on January 9, 1985 in Zadar, Croatia. He attended Petar Lorini Primary School in Sali and Šime Budinić Primary School in Zadar. He also attended Franjo Petrić High School in Zadar. In 2003 he enrolled in graduate study in Electrical Engineering (Electrical Power Engineering) at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture of the University of Split. He graduated in 2008 with a specialization in Electrical Power Drives and Plants. In the same year, he was employed at Elektra Zadar as an independent electrical engineer. He worked in the Department for Measuring Devices, and in the Department for Measurement and Protection from 2008 to 2014. He currently works in the Department for Realization of Investment Projects. He enrolled in the postgraduate doctoral study of Electrical engineering and information technology at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture in Split in 2009. So far he has co-authored and published one scientific paper in a journal indexed in Scopus and SCI-Expanded, and one scientific paper at an international conference.